imtoken官方下载钱包|wb封闭液

作者: imtoken官方下载钱包
2024-03-09 21:53:47

WB的无敌战神之路——封闭 - 知乎

WB的无敌战神之路——封闭 - 知乎切换模式写文章登录/注册WB的无敌战神之路——封闭PTMBio景杰生物WB做得好,导师捡到宝。对于刚入实验室的热血青铜宝宝,WB可谓处处都是轰炸区,一个不小心,分分钟落地成盒。为了帮助大家快速get变强秘籍,提升吃鸡率,我们在此重磅推出《WB实验全攻略》系列文章,助力各位早日成为实验室MVP,进阶WB无敌战神。在上一期的分享中,我们介绍了如何湿转 (WB的无敌战神之路——转膜),今天将接着介绍封闭,我们开始吧~封闭的目的:蛋白通过非共价作用力吸附于膜表面,但是膜上很多位置并未吸附蛋白,封闭液中的蛋白成分可以与膜表面的空白位置结合,从而避免一抗的非特异性结合,产生非特异条带或者背景杂乱。01|封闭液的选择正确的封闭液可以促使抗原抗体更好的结合。对于封闭液的选择,可以通过抗体说明书确定有无特殊的封闭方法,也可根据实验结果进行相应调整。小编在这里给大家总结了常见的封闭液以及它们的优缺点。Ⅰ 脱脂奶粉脱脂奶粉成分复杂,含有多种蛋白,封闭全面。大部分情况下,脱脂奶粉是首选的封闭液 (浓度2.5-5% w/v),经济实惠,可以达到较好的封闭效果。但因含少量残留的生物素和碱性磷酸酶 (AP),它不适用于生物素标记和AP标记的抗体系统。脱脂牛奶也不适用于磷酸化蛋白的检测分析,因为奶粉中含有的酪蛋白是一种磷酸化蛋白,会导致抗体的非特异性结合,使条带背景变脏。Ⅱ 牛血清白蛋白 (BSA)脱脂奶粉不能用于磷酸化蛋白的封闭,分析磷酸化蛋白理论上要用BSA (浓度2-5 % w/v)。WB结果显示,相较于脱脂奶粉,BSA更适用于磷酸化蛋白的检测。遥想当年,我还不知道磷酸化蛋白封闭需要用BSA,一个磷酸化蛋白我整整跑了一个月,总是背景高,血的教训哪!虽然BSA成分单一,但普通级别的BSA可能含有IgG或其他血清蛋白,这些蛋白会与哺乳动物抗体 (如抗牛、山羊、绵羊、马等二抗) 产生交叉反应,增加非特异性背景信号,因此建议使用不含IgG的BSA产品。相对于脱脂奶粉,BSA不含生物素,对于生物素标记的抗体系统而言,可能BSA是最好的选择。Ⅲ 血清血清如胎牛血清FBS含有大量的蛋白质,可以用于封闭。但与BSA一样,它含有免疫球蛋白和血清蛋白,这些蛋白会和哺乳动物抗体产生交叉反应,增加非特异性背景信号。而且血清价格更加昂贵,需要的浓度更高 (5-10 % w/v),因此在WB实验中血清一般用的较少,它更多地应用于免疫组化和免疫荧光实验中样本的封闭。Ⅳ 明胶明胶是胶原蛋白的产物,从冷水鱼皮肤中提取出来的明胶即使在低温情况下也不会凝固,通常使用浓度为0.1-5 % (w/v)。与BSA和血清不同,它不含任何血清蛋白,因此不会和哺乳动物抗体产生交叉反应,这大大降低了非特异性背景信号。但鱼胶含有内源生物素,因此不适用于生物素标记的抗体系统。Ⅴ 混合封闭液有研究表明[1],混合型液封闭效果 (脱脂奶粉+BSA+FBS+明胶) “秒杀”前四种封闭液。如图1所示,不难看出,混合型封闭液的封闭效果最好,信号最强 (该实验使用的是HRP标记的抗体系统)。图1 不同的封闭液对高分子量蛋白CFTR表达的影响/Nitrocellulose:NC膜;FBS:胎牛血清;Gelatin:明胶;Blotto:脱脂奶粉;Mixture:混合液Ⅵ 酪蛋白相对于AP标记二抗,HRP标记二抗灵敏度更高,酶促反应更快。绝大多数实验室用的都是HRP标记二抗。如果有实验室用的是AP标记二抗,小编建议用1 % w/v的酪蛋白进行封闭。酪蛋白在中性和碱性条件下带有负电,会与带正点的膜相互作用,可以用于AP标记的抗体检测系统,缺点是溶解性相对较差~02|封闭的流程01、转膜结束前30 min,以TBST为缓冲体系 (配方见文末) 配置封闭液,并利用涡旋仪、摇床等仪器使封闭液充分溶解并混匀;02、转膜结束后,在抗体孵育盒中加入适量封闭液,并用镊子夹住条带,将其完全浸泡在封闭液中,置于摇床上室温摇动孵育1-2 h,也可以4 ℃冰箱孵育过夜。03|问题解析WB的结果不理想有很多原因,下面我们就分析一下封闭可能会导致的问题吧~1. 条带上有黑色斑点奶粉未完全溶解。出现黑点最常见的原因是奶粉没有完全溶解,建议利用涡旋仪、摇床等仪器使奶粉充分溶解并混匀,或溶解后离心取上清液使用。图2 条带上有黑色斑点2. 条带背景高封闭时间过短。封闭的目的是使封闭液中的蛋白成分与膜表面的空白间隙结合,从而避免一抗的非特异性结合。封闭时间过短可能会导致一抗与空白间隙非特异性结合,背景变脏,可以增加封闭时间,或提高封闭液浓度。图3 条带背景高3. 条带信号弱过度封闭。条带信号弱,可以适当降低封闭液浓度,或者更换封闭液,封闭时间如果过长也可以考虑降低,但如果原本时间是1 h,不建议再缩短时间。但封闭过度很少见,条带信号弱可能要优先考虑其他条件,比如样品新鲜度、上样量、一抗二抗浓度等。 图4 条带信号弱04|TBST配方发布于 2023-02-16 11:05・IP 属地浙江科学实验​赞同 28​​14 条评论​分享​喜欢​收藏​申请

【技术分享】WB封闭液的选择 - 知乎

【技术分享】WB封闭液的选择 - 知乎切换模式写文章登录/注册【技术分享】WB封闭液的选择菲恩生物专业研发生产elisa试剂盒/抗体/蛋白厂家封闭是Western Blot 至关重要的一部分, 所以正确的封闭液选择可以让抗体更特异地和抗原结合,为成功的WB奠定基础。虽然这个步骤操作简单,但是封闭液的选择确是很多科研人员的难题。为了让大家更方便的选择适合自己实验的封闭液,这里给大家介绍6种不同的封闭液,以及它们的优缺点。1、脱脂奶粉最便宜而且最好买的封闭剂就属脱脂奶粉了。无论是从化学制品公司还是从超市购买,都可以直接拿来使用。通常封闭液的浓度为 2.5-5% (w/v)。但值得注意的是,脱脂奶粉是许多种蛋白质的混合物,其中含有酪蛋白,是一种磷蛋白。如果你的目标蛋白是磷蛋白的话,千万不要选择脱脂奶粉,否则会有很多背景信号。即使你的目标蛋白不是磷蛋白,因为是蛋白质的混合物,所以也容易产生较高的背景信号。2、牛血清白蛋白(BSA)牛血清白蛋白是从牛血清中提纯之后的一种球蛋白,是除了脱脂奶粉之外,非常常用的封闭剂。通常含有BSA的封闭液的浓度为2-5%(w/v)。但大家也可 以根据自己实验的需要来改变浓度,因为价格比较高,所以很多研究人员都是用尽可能低而有效的浓度。虽然BSA不是磷蛋白而且是单一蛋白,但是提纯过程中有 可能含有IgG或其他血清蛋白等污染物,这些蛋白都可以和哺乳动物抗体产生交叉反应,会增加非特异性背景信号 。3、全血清全血清是许多蛋白质的混合物,例如胎牛血清、兔血清、山羊血清等,同样可以被用来当做封闭剂。大家对它的使用率很低,因为跟脱脂奶粉和BSA相比,并没有什么突出的好处,但价格却更贵。通常使用的浓度为 5-10%(w/v)。像BSA一样,它含有免疫球蛋白和血清蛋白,会和哺乳动物抗体产生交叉反应。4、鱼胶用鱼胶当封闭液是从猪皮胶演变而来的。鱼胶是从冷水鱼的皮肤中提取出来的,即使在温度较低的情况下也会不会凝固。通常使用的浓度为0.1-5% (w/v)。不像脱脂奶粉和BSA,它不含有任何的血清蛋白,所以就不会和哺乳动物抗体产生交叉反应,大大降低了背景信号。但是鱼胶不能用来封闭生物素- 抗生物素抗体蛋白系统,因为它含有内源性生物素。5、聚乙烯吡咯烷酮PVP 是传统封闭液的非蛋白质性质的替代品。虽然早在1993年就有文献发表,在封闭技术上却是很新的产品。PVP是一种水溶性多聚物,可以很快和硝酸纤维素和PVDF膜结合。通常使用的浓度在0.5-2%(w/v),而且通常会和其他封闭剂一起使用。PVP 在用于检测较小目标蛋白的时候非常有效。6、商品化封闭液商品化封闭液通常含有提纯过的蛋白,用这个封闭液的好处就是你可以确定里面不含有磷蛋白、免疫球蛋白、白蛋白、生物素 等其他封闭液中难以避免的成分。当然,价格也就更贵。每个商品化封闭液都有自己的Protocol,基本照做就没问题,而且封闭时间很快。 相信大家现在对各种封闭液都有了更全面的了解。总的来说,封闭液的选择基于三样事情:抗体、目标蛋白和检测系统。但是要想找到适合自己目标蛋白的封闭液,并不简单。除了排出一些很明显不合适的,剩下的就需要多花点时间尝试不同种类、不同浓度的封闭液,才能找到最适合的。发布于 2020-12-18 14:45蛋白质蛋白表达分子生物学​赞同 12​​1 条评论​分享​喜欢​收藏​申请

蛋白免疫印迹( Western Blot)详细操作步骤 - 知乎

蛋白免疫印迹( Western Blot)详细操作步骤 - 知乎首发于细胞生物切换模式写文章登录/注册蛋白免疫印迹( Western Blot)详细操作步骤岚solo原理:蛋白免疫印迹( Western Blot,WB)是将蛋白样本通过聚丙烯酰胺电泳按分子量大小分离,再转移到杂交膜(blot)上,然后通过一抗/二抗复合物对靶蛋白进行特异性检测的方法。 WB 是进行蛋白质分析最流行和成熟的技术之一。本SOP包括Western Blot 操作方法及常见问题分析,有助于成功完成 WB。一、蛋白样本提取制备1 细胞或组织裂解2 蛋白酶和磷酸酶抑制剂3 蛋白定量4 电泳上样样品的准备二、 电泳1 PAGE 胶的制备2 蛋白分子量 Marker3 阳性对照4 内参对照5 上样与电泳三、 转膜与显色( Western Blot)1 胶中蛋白的检测2 蛋白转膜3 膜上蛋白的检测:丽春红4 膜的封闭5 一抗的孵育6 二抗的孵育7 显色四、常见问题分析与解决方案五、试剂及缓冲液配方一、蛋白样本提取制备蛋白样品制备是 Western Blotting 的第一步,是决定 WB 成败的关键步骤之一。蛋白提取总体原则与注意事项包括:1) 尽可能提取完全或降低样本复杂度使得集中于提取目的蛋白(通过采用不同提取方法或选择不同的试剂盒产品)。2) 保证蛋白处于可以溶解状态(通过裂解液的pH 、盐浓度、 表面活性剂、还原剂等的选择实现)。3) 提取过程防止蛋白降解、聚集、沉淀、修饰等(全程保证在冰盒中低温操作,加入合适的蛋白酶和磷酸酶抑制剂)。4) 尽量去除核酸,多糖,脂类等干扰分子(通过加入核酸酶或采取不同提取策略)。5) 样品分装,长期于-80℃中保存,避免反复冻融。1-1 细胞或组织裂解1-1-1 细胞裂解1. 培养的细胞经预冷的 PBS 漂洗 2 次;2. 吸净PBS,加入预冷的裂解液(使用前裂解液中加入蛋白酶和磷酸酶抑制剂)(0.1 ml /106 cells);结合不同培养板及实际细胞数量级及参照下表加入相应量裂解液: 面积(cm2)细胞量(个)裂解液量(μl)96 孔培养板0.320.4-1.0×10520-5024 孔培养板20.3-0.6×10630-6012 孔培养板4.50.6-1.2×10660-1206 孔培养板9.61.2-2.5×106120-2503.5 cm 培养皿81.0-2.0×106100-2006 cm 培养皿212.5-5.0×106250-50010 cm 培养皿550.7-1.5×107700-150025cm2 培养瓶253.0-6.0×106300-60075cm2 培养瓶751.0-2.0×1071000-20003. 用细胞刮子刮取贴壁细胞,将细胞及裂解液温和地转移至预冷的离心管中;不能用细胞刮子刮取的情况可直接冰上裂解30min后用枪多次吹打至细胞完全裂解;4. 4℃摇动 30 min;5. 4℃离心 12000 rpm,20 min;6. 轻轻吸取上清,转移至新预冷的离心管中置于冰上,即为蛋白样本,弃沉淀。蛋白样本暂时不作处理时可以放入-80℃保存。7. 目的蛋白非细胞外基质(ECM)或对胰酶不敏感时也可以采用胰酶消化法收集细胞(即细胞吸去培养基,PBS 漂洗 2 次,加入胰酶消化至脱落,加入预冷的PBS,移入预冷的EP管,离心收集细胞,加入预冷裂解液(使用前加入蛋白酶和磷酸酶抑制剂),依次按上面4,5,6步骤处理。1-1-2 组织裂解1. 用预冷的工具分离目的组织,尽量置于冰上以防蛋白酶水解;2. 将组织块放在圆底的微量离心管或 EP管中,加入液氮冻结组织于冰上均质研磨,长期可保存于-80°C;3. 每约10 mg组织加入约200 μl 预冷的裂解液(使用前加入蛋白酶和磷酸酶抑制剂),冰浴匀浆后置于4℃摇动2h,裂解液体积与组织样本量有适当比例(最终的蛋白浓度至少达到1 mg/ml,理想的蛋白浓度应为1-5 mg/ml).4. 4℃离心 12000 rpm,20 min,轻轻吸取上清,转移至新预冷的微量离心管中置于冰上,即为蛋白样本,弃沉淀。蛋白样本暂时不作处理时可以放入-80℃保存。1-2蛋白酶抑制剂本实验室使用的蛋白酶抑制剂为PMSF,抑制丝氨酸蛋白酶(如胰蛋白酶,胰凝乳蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶)。在水液体溶液中不稳定,30min就会降解一半,应在使用前从贮存液中现用现加于裂解缓冲液中。工作浓度一般用1mM,1:100(V/V)加入贮液(100mM PMSF),样品处理超过1h,补加一次。PMSF剧毒,为了安全和健康,请穿实验服并戴一次性手套操作.PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。除PMSF外,裂解液中还需加入蛋白酶和磷酸酶抑制剂(做磷酸化蛋白时必须加),推荐购商品化蛋白酶和磷酸酶抑制剂复合试剂盒或 COOKTAIL,或按下表配制:备注:其中Sodium orthovanadate 配制活化方法如下:所有步聚均需在通风橱中进行:1). 用双蒸水配制100 mM 正矾酸钠溶液;2). 用盐酸HCl 调至pH 9.0;3). 煮沸至溶液无色,尽量减少水分挥发;4). 冷却至室温;5). 再调pH 至 9.0;6). 再煮沸至无色;7). 重复上述过程,直至溶液煮沸冷却后达pH 9.0;8). 用水定容至原体积;9). 分装保存于- 20°C. 溶液变黄则弃之不用。1-3 蛋白定量BCA 法以牛血清白蛋白 (BSA) 作为标准曲线。基于双缩脲原理,碱性条件下蛋白质将 Cu2+ 还原成 Cu1+, BCA(Bicinchoninic 酸)螯合 Cu1+ 作为显色剂,产生兰紫色并在 562 nm 有吸收峰,单价 Cu1+ 与蛋白呈剂量相关性,灵敏性很高,试管法可测范围 20-2000 μg/ml,微孔法为 0.5-10μg/ml。不易受一般浓度去污剂的干扰。可耐受螯合剂、略高浓度的还原剂的影响,40min内抗干扰能力强。BCA测定方法如下:1) 标准曲线的绘制:取一块酶标板,按照下表加入试剂:孔号01234567蛋白标准溶液(μL)01234567去离子水(μL)2019181716151413对应蛋白含量(μg)051015202530352) 根据样品数量,按 50 体积 BCA 试剂 A 加 1 体积 BCA 试剂 B(50:1)配制适量 BCA 工作液,充分混匀;3) 各孔加入 200μL BCA 工作液;4) 把酶标板放在振荡器上振荡 30sec,37℃放置 30 min,然后在 562nm 下比色测定。以蛋白含量(μg)为横坐标,吸光值为纵坐标,绘出标准曲线;5) 稀释待测样品至合适浓度,使样品稀释液总体积为 20μL,加入 BCA 工作液 200μL,充分混匀,37℃放置 30 min后,以标准曲线 0 号管做参比,在 562nm 波长下比色,记录吸光值;6) 根据所测样品的吸光值,在标准曲线上即可查得相应的蛋白含量(μg),除以样品稀释液总体积(20μL),乘以样品稀释倍数即为样品实际浓度(单位:μg/μL)。1-4 电泳上样样品的准备1-4-1变性、还原蛋白样本一般的抗体只能识别抗原蛋白中的部份序列结构(表位),因此,为使抗体能够达到结合该表位而需要将蛋白样本进行变性,使之打开折叠的空间结构,蛋白变性一般使用含阳离子变性去污剂如 SDS 的上样 buffer (loading buffer),并于 95-100°C 煮沸5 min,对于多次跨膜蛋白,可以于 70°C 加热 5-10 min,本实验室的 上样 buffer 称为5×SDS凝胶还原型加样缓冲液,上样时与样本1:4混合后变性上样即可。SDS是阴离子去污剂、变性剂。氨基酸侧链与 SDS 充分结合形成带负电荷的蛋白质-SDS 胶束,蛋白质-SDS 胶束所带的负电荷大大超过了蛋白质分子原有的电荷量,消除了不同分子之间原有的电荷差异,SDS与强还原剂一起使蛋白分子氢键、疏水键打开,使蛋白质分子线性化。1-4-2 天然和非还原样本某些抗体识别的表位是非连续氨基酸构成的蛋白三维结构,此种情况则需要进行非变性的 WB,抗体的说明书一般会标注,这种非变性电泳不加 SDS,样本也不需煮沸。某些抗体仅识别蛋白的非还原态,如某些 cysteine 基的氧化态,即loading buffer 和电泳液中不加入β-巯基乙醇和或DTT。data-draft-type="table" data-size="normal" data-row-style="normal">蛋白状态凝胶状态loading buffer电泳缓冲液还原—变性还原和变性有β-巯基乙醇或DTT ,有SDS有 SDS还原—天然还原和非变性有β-巯基乙醇或DTT ,无 SDS无 SDS氧化-变性非还原和变性无β-巯基乙醇或DTT ,有 SDS有 SDS氧化-还原非还原和天然无β-巯基乙醇或DTT ,无 SDS无 SDS注:除说明书特别标注之外,一般情况下,均使用变性和还原电泳二、 电泳SDS-PAGE基本原理:1). SDS-PAGE 是在蛋白质样品中加入 SDS 和含有巯基乙醇的样品处理液,SDS 是一种很强的阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构。2). 强还原剂巯基乙醇(或二硫苏糖醇,DTT)可以断开二硫键破坏蛋白质的四级结构。使蛋白质分子被解聚成肽链形成单链分子。解聚后的侧链与 SDS 充分结合形成带负电荷的蛋白质-SDS 复合物。3). 蛋白质分子结合 SDS 阴离子后,所带负电荷的量远远超过了它原有的净电荷,从而消除了不同种蛋白质之间所带净电荷的差异。蛋白质的电泳迁移率主要决定于亚基的相对分子质量,而与其所带电荷的性质无关。2-1 PAGE胶的制备聚丙烯酰胺凝胶(polyacrylamide gel)是由单体丙烯酰胺(acrylamide,简称 Acr)和交联剂N,N’-亚甲基双丙烯酰胺(N,N’-methylenebisacylamide,简称 Bis)在催化剂(过硫酸胺或核黄素 AP)和加速剂(四甲基乙二胺 TEMED)作用下聚合交联而成的三维网状结构的凝胶。化学惰性强,具有一定的机械强度和透明度。是良好的电泳介质。聚丙烯酰胺凝胶聚合机理是通过提供氧游离基的催化,使体系发生氧化还原作用来完成的。催化体系主要有化学催化(AP-TEMED)和光化学催化(核黄素-TMTED)体系。PAGE胶分为连续系统和不连续系统两大类。连续系统电泳体系中缓冲液 pH 值与凝胶中的相同。带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中带电颗粒在电场中泳动不仅有电荷效应、分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续电泳 作用缓冲液 PH凝胶浓度浓缩胶使蛋白样品浓缩pH6.8 Tris-HCl低,2-5%分离胶使蛋白样品分离pH8.8 Tris-HCl高,根据蛋白大小不连续系统的浓缩效应:凝胶层的不连续性:浓缩胶的孔径大,分离胶的孔径小。在电场的作用下,蛋白质颗粒在大孔胶中遇到的阻力小,移动快。而在小孔胶中遇到的阻力大,移动慢。因此,在两层凝胶的交界处,由于凝胶孔径的不连续性使样品迁移受阻而压缩成很窄的区带。缓冲液离子成分和pH的不连续性:HCl易解离出Cl- ,它在电场中迁移率大,走在最前面,故称为快离子或前导离子。电极缓冲液中的甘氨酸在pH6.8 的缓冲液中解离度很小,仅为 0.1-1%,因而在电场中迁移率很小,称为慢离子或尾随离子。蛋白质均带负电荷,在电场中均移向正极,其有效迁移率介于快慢离 子之间,于是蛋白质就在快慢离子间形成的界面处,被浓缩成极窄的区带。当进入pH8.8的分离胶时,甘氨酸解离度增加,其有效迁移率超过蛋白质,因此氯离子和甘氨酸离子沿着离子界面继续前进。蛋白质分子由于分子量大,被留在后面,然后分离成多个区带。根据SDS聚丙烯酰胺的有效分离范围选择分离胶浓度。SDS-PAGE胶有效分离范围聚丙烯酰胺胶浓度%线性分离范围/kDa557-2127.536-941020-801212-601510-43分离胶的配置:将二块玻璃板叠放整齐,用夹子两边夹好,将这二块玻璃板固定在底座上。插入配套梳子,在梳子下缘划线,指示灌胶位置,拔去梳子。在分离胶的配置烧杯中按配方加料,混匀后利用移液器将分离胶(避免气泡产生)滴入二块玻璃板之间,至液面达到梳子下缘1cm 处。用移液器缓慢加入饱和正丁醇或水,注意不要冲乱胶面。静置,待分离胶聚合后,倒去或用滤纸吸去水层。浓缩胶的配制:在浓缩胶的配置烧杯中按配比加料,混匀后即刻用移液器加浓缩胶(避免气泡产生)覆于二块玻璃板之间的分离胶之上至满,轻轻插入梳子(插入梳子时一边倾斜直至全部插入,防止产生气泡)。静置待其凝结后,即制成凝胶板。凝胶制成后最少需放置2h或最好湿盒过夜后才能使用,保证交联反应完全。2-2 蛋白分子量 Marker预染或非预染各种分子量的蛋白,用于标示电泳中蛋白的大小和示踪。2-3阳性对照目的蛋白或明确表达目的蛋白的组织或细胞的蛋白提取物,用于检验整个实验体系和过程的正确性有效性、特别是一抗的质量和效率。建议使用对照,可查阅文献或抗体说明书选择购买或自提对照样本。2-4 内参对照管家基因编码的、很多组织和细胞中都稳定表达的蛋白,用于检测整个 WB 实验过程及体系是否正常工作,并作为半定量检测目的蛋白表达量的标准对照必须设立。内参名称分子量大小适用范围β-actin43kDa胞浆和全细胞GAPDH30-40 kDa胞浆和全细胞Tubulin55 kDa胞浆和全细胞VCDA1/Porin31 kDa线粒体COXIV16 kDa线粒体Lanin B166 kDa细胞核(不适于去除核膜的样本)TBP38 kDa细胞核(不适于去除DNA的样本)2-5上样电泳蛋白抗原上样量为30 ug。根据样品量选择SDS-PAGE电泳玻璃板间隙厚度,一般0.75mm间隙15孔的上样量 < 15uL/孔,1mm间隙10孔的上样量 < 30ul/孔。上样:将二块玻璃板制成的凝胶板子上的夹子卸去,将凝胶板垂直靠在电泳槽里的电源架上,使凝胶板的凹沿面靠向电源架。通常两块凝胶板共用一个电源架。将凝胶板与电源架按要求固定于电源槽内。按要求加入电泳缓冲液,使分别加入在两块凝胶板中间电源架内的电泳缓冲液与加入在电泳槽中的电泳缓冲液互不相通。轻轻地拔去凝胶板内的梳子。取处理后的样品液,用微量进样器吸取适量样品液,将样品液缓缓加入凝胶板内地凹口部位(样品点入处)。注意不要冲散样品。电泳:用二根导线连接电泳槽与电泳仪,注意红色与黑色电极的插头和插口相配。电泳时上层胶使用低电压恒压电泳,打开电源将将电压调到80v(一般15min左右),而在溴酚蓝进入下层胶时使用高压恒压电泳,将电压调到120v至溴酚蓝到达胶的底端处附近即可停止电泳。三、 转膜与显色3-1胶中蛋白的检测电泳后检测蛋白是否迁移正确与平均,可采用锌染(负染)、胶染(blue silver)或考马斯蓝染色检测,如果凝胶中的蛋白需要进行转膜则需可逆的锌染法,否则可以采用不可逆考马斯亮蓝法染色。锌染法(负染):电泳胶用蒸馏水洗30秒,加入含0.1% SDS 的0.2 M 咪唑溶液摇动染色 10-15 min,再用去离子水洗数秒,加入0.2 M ZnSO4溶液摇动直至在暗背景下蛋白出现透明条带(约1min),移去ZnSO4溶液加入去离子水中止显色;胶置于0.1- 0.25 M Tris/0.25 M EDTA pH 8.0 缓冲液中漂洗脱色两次,再置于电转缓冲液中开始转膜。胶染(blue silver)法:电泳胶用蒸馏水洗数30秒,考马斯亮蓝G-250染液室温染色1h至过夜,保持摇匀,回收染液,倒入数次去离子水摇动至脱去多余的染料,蛋白被染成深蓝色。考马斯亮蓝R250法:电泳胶用蒸馏水洗数30秒,考马斯亮蓝R-250染液室温染色1h至过夜,保持摇匀,回收染液,用蒸馏水洗数分钟,倒入脱色液摇匀至脱去多余的染料,蛋白被染成深蓝色。 考马斯亮蓝快速染色脱色方法: a. 电泳结束后,取胶放入适量考马斯亮蓝染色液中,微波炉加热至接近沸腾或刚刚沸腾,立即停止加热。通常对于胶浓度大于10%的胶比较坚韧,在发生煮沸时不易破损;对于胶浓度小于10%的胶,宜尽量避免煮沸,以免出现 胶碎裂的情况。 b. 随后在染色液温度较高的情况下,在室温摇床上摇动5-10分钟。 c. 回收染色液。d. 加入适量脱色液,确保脱色液可以充分覆盖凝胶。e. 微波炉加热至接近沸腾或刚刚沸腾,立即停止加热。 f. 随后在脱色液温度较高的情况下,在摇床上摇动5-10分钟。此时通常可以观察到比较清楚的蛋白条带。 g. 更换新鲜的脱色液,重复步骤e和步骤f,直至蓝色背景基本上全部被脱去,蛋白条带染色效果达到预期。 h. 完成脱色后,可以把凝胶保存在水中,用于后续的拍照等。保存在水中的凝胶会发生溶涨。如需避免溶涨,可以把胶保存在含20%甘油的水中。长期保存可以制备干胶。3-2 蛋白转膜杂交膜的选择是决定 Western blot 成败的重要环节。应根据杂交方案、被转移蛋白的特性以及分子大小等因素,选择合适材质、孔径和规格的杂交膜。用于 Western blot 的膜主要有两种:硝酸纤维素膜(NC) 和PVDF 膜。膜是蛋白印迹实验的标准固相支持物,在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与膜发生疏水作用而高亲和力的结合在一起,但在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,选择不同孔径的膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。通常用 0.45μm 和 0.2μm 两种规格的膜。大于20kD 的蛋白可用 0.45μm 的膜,小于20kD 的蛋白就要用 0.2μm 的膜了,如用 0.45μm 的膜就会发生“Blowthrough”的现象。最常用于 Western Blot 的转移膜主要是硝酸纤维素(Nitrocellulose, NC)膜和聚偏二氟乙烯(Polyvinylidene Fluoride, PVDF)膜,此外也有用尼龙膜、DEAE 纤维素膜做蛋白印迹。尼龙膜和 NC 膜的特点相似,主要用于核酸杂交。硝酸纤维素(nitrocellulose, NC)膜:NC 与蛋白质靠疏水作用结合,无需预先活化,对蛋白质的活性影响小;非特异性本底显色浅;价格低廉,使用方便。但结合在 NC 上的小分子蛋白质在洗涤时易丢失; NC膜韧性较差,易损坏。聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)膜:与蛋白质亲和力高,用前需在甲醇中浸泡,以活化膜上的正电基团,使其更容易与带负电荷蛋白结合,非常适合于低分子量蛋白的检测。但 PVDF 膜在使用之前必需用纯甲醇浸泡饱和 1-5 秒钟。膜的选择主要根据:1. 膜与目的蛋白分子的结合能力(也就是单位面积的膜能结合蛋白的载量),以及膜的孔径(也就是拦截蛋白的大小);2. 不影响后续的显色检测(也就是适和用于所选的显色方法,信噪比好);3. 如果后继实验有其他要求,比如要做蛋白测序或者质谱分析,还要根据不同目的来挑选不同的转移膜。蛋白因结合 SDS 而带电荷,在电场下从胶中转至膜上,转膜方式分为半干和湿转两种,半干式转膜速度快,而湿式成功率高并特别适合用于分子量大于100KD 的蛋白。湿式转膜三明治排列为:海绵/滤纸/ 胶/ 膜/滤纸/ 海绵,全部紧密排列,特别是胶/膜之间不能留有气泡,三明治安放的方向确认正确,负极方为带负电的胶里的蛋白,向正极方(膜)电迁移。SDS-PAGE电泳完毕,用刀片或薄板将凝胶板的两块玻璃轻轻撬开,使凝胶倾伏在其中一块玻璃板上。用刀片在凝胶上沿分离胶与浓缩胶的交界处,将分离胶切下,并在分离胶的左上角切掉一小角,以标记样品顺序。然后将胶小心移入转膜缓冲液中。剪下与分离胶同样大小的0.45um的PVDF膜,以甲醇浸泡5s。剪下6张同样大小的滤纸,与PVDF膜,胶同时以转移缓冲液平衡15min。在转膜装置上从负极(黑底)到正极放置海绵垫片、滤纸、胶、膜、滤纸、海绵垫片(由下而上),放置时一定要排除气泡,特别是膜与滤纸、胶与膜、滤纸与胶之间。设置转膜电流为恒流,200mA,时间约需40min(蛋白大小不同所需时间不同,一般1KD约为1min)。转完后,取出膜,在与胶相同的位置小心剪去一角,标示电泳方向及吸附有蛋白的膜面。标准的电转缓冲液为 1X Tris-glycine buffer 不含 SDS,但加入 20%甲醇,如果转膜的蛋白分子量大于80KD,则推荐加入 SDS 使之终浓度为 0.1%。PVDF 膜需要浸泡甲醇中 1-2 min,再孵育于冰冷的电转缓冲液中 5 min,胶也需在冰冷的电转缓冲液中平衡 3-5 min,否则转膜时会导致条带变形。电转移缓冲液中 SDS 与甲醇的平衡、蛋白的大小、胶的浓度都会影响转膜效果,如下调整可以增加转膜效率:a) 大蛋白(大于 100 KD )1) 对于大蛋白而言,其在凝胶电泳分离迁移较慢,而从凝胶转出也非常慢,因此对于这种大分子量蛋白应该用低浓度的凝胶, 8% 或更低,但因低浓度的胶非常易碎,所以操作时需十分小心,2) 大蛋白易在凝胶里形成聚集沉淀,因此,转膜时在电转移缓冲液加入终浓度为 0.1%的 SDS,以避免出现这种情况,甲醇易使SDS 从蛋白上脱失,因此应降低电转移缓冲液中甲醇的浓度至 10%或更低,以防止蛋白沉淀。3) 降低电转移缓冲液中甲醇的比例以促进凝胶的膨胀,易于大蛋白的转出。4) 如果使用硝酸纤维素膜,甲醇是必需的,但如果是 PVDF 膜,甲醇可以不必加入电转移缓冲液中,但转膜前PVDF 需用甲醇活化。5) 选择湿式, 4℃ 转膜过夜,以取代半干式转膜。b) 小蛋白(小于 20 KD)1) SDS 妨碍蛋白与膜的结合,特别是对小蛋白更是如此,因此,对于小分子的蛋白,电转移缓冲液中可以不加 SDS 。2) 保持 20% 的甲醇浓度。注意事项:1. 避免直接接触膜,应使用镊子,手指上的油脂与蛋白会封闭转膜效率并易产生背景污斑2. 排列三明治时,尽量用移液器或 15 ml 试管赶除胶与膜之间的气泡,或将三明治放在装有的培养皿中以防止气泡产生,请戴手套!3. 确认裁剪的膜和滤纸与凝胶尺寸相同,否刚导致电流不能通过膜,从而转膜无效4. 鸡抗体易于与 PVDF 膜和其它尼龙膜结合,导致高背景,请替换成硝酸纤维素膜以降低背景。3-3 膜上蛋白的检测:丽春红染色为检测转膜是否成功,无预染蛋白Marker时可用丽春红染色。染色方法:将膜放入 TBST 洗一次,再置于丽春红染色工作液中,在室温下摇动染色 5 min,大量的水洗膜直至水变清无色蛋白条带清晰,(膜也可以用 TBST 或水重新洗后再进行染色)PVDF 膜需用甲醇再活化后用 TBST洗后进行封闭。3-4 膜的封闭杂交膜上有很多非特异性的蛋白质结合位点,为防止这些位点与抗体结合引起非特异的染色和背景,一般用惰性蛋白质或非离子去污剂封闭膜上的未结合位点来降低抗体的非特异性结合。封闭剂应该封闭所有未结合位点而不替换膜上的靶蛋白、不结合靶蛋白的表位,也不与抗体或检测试剂有交叉反应。最常见的封闭剂是 BSA、脱脂奶粉、酪蛋白、明胶和 Tween-20(0.05 - 0.1%)稀溶液 PBST 或者 TBST。Tween-20 的作用:Tween-20 是一种非离子型去污剂,有复性抗原的作用,可提高特异性的识别能力。在做 westen blot 时,用惰性蛋白质或非离子去污剂封闭膜上的未结合位点可以降低抗体的非特异性结合。Tween 这种非离子型去污剂在乳化蛋白时,不破坏蛋白的结构,可减少对蛋白质之间原有的相互作用的破坏。离子型去污剂如 SDS 则破坏蛋白的结构。传统上有两种封闭液:脱脂奶粉或 BSA。脱脂奶粉不能与生物素化或伴刀豆蛋白标记的抗体一起使用,因为脱脂奶粉含有糖蛋白和生物素。如果封闭剂中含磷酸酶,用磷酸化特异性抗体分析磷酸化蛋白受到影响,因为磷酸酶与印记膜上的磷酸化蛋白接触可使之去磷酸化。检测磷酸化抗体时,不能使用酪蛋白/脱脂奶粉作为封闭剂。某些抗体用 BSA 封闭时因不明原因可能会产生比脱脂奶粉更强的信号,请仔细阅读说明书注明的注意事项和膜的特殊的封闭方法。一般封闭条件为:5% 脱脂奶粉或 BSA 溶液室温或者 37℃缓慢摇荡 1-2 h,特殊情况也可 4℃过夜。根据结果情况调整封闭试剂的浓度和类型。封闭完成后进行洗膜,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min洗1次。3-5一抗的孵育孵育 Buffer:按抗体说明书建议的稀释倍数,用封闭液稀释一抗,如果说明书没有建议的稀释倍数,则参照一般推荐的稀释倍数(1:1000-1:2000),一抗浓度过高会导致产生非特异性条带。吸尽封闭液后,立即加入稀释好的一抗,室温或 4℃在摇床上缓慢摇动孵育2 h。孵育时间:一抗的孵育时间可从2h至过夜(一般不超过 18 h)不等,取决于抗体与蛋白的亲和性和蛋白的含量丰度,建议使用较高的抗体稀释倍数和较长的孵育时间来保证特异性结合。孵育温度:尽可能低温孵育,如果在封闭液中孵育一抗过夜,应在 4℃进行否则会产生污染而破坏蛋白(降别是磷酸基团)。孵育一抗时需保持适当的摇动使之均匀覆没膜,防止结合不均匀。孵育完成后吸取一抗,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min,重复洗3次。3-6二抗孵育用封闭液稀释二抗至抗体说明书规定浓度,将转有蛋白的PVDF膜浸入装有抗体的方形保鲜盒中,震荡孵育1-2 h。孵育完成后吸取二抗,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min,重复洗3-5次。3-7化学发光酶促反应比同位素安全且快速,已经成为 Western Blot 的主流检测方法。酶促反应可以搭配不同的底物从而实现不同的显色方法:化学发光和底物显色,前者灵敏度很高,已经达到皮克级别,甚至还有飞克级别的,灵敏度超过了同位素;而后者由于直接显色而操作简便且成本低。辣根过氧化物酶在H2O2 存在下,氧化化学发光物质鲁米诺(luminol,氨基苯二酰一肼)并发光,在化学增强剂存在下光强度可以增大 1000 倍,通过将印迹放在照相底片上感光就可以检测辣根过氧化物酶的存在。发光液(A液、B液)1:1配置(注意避光),用移液器吸取合适量的发光液至覆盖PVDF膜,ECL发光仪上曝光并采集图像。四、常见问题分析与解决方案五、试剂及缓冲液配方1. 试剂:国药AR:丙烯酰胺(Acr)、甲叉双丙烯酰胺(Bis)、过硫酸铵(AP)、Tris、SDS、甲醇、乙醇、甘氨酸(Gly)、冰乙酸、磷酸、硫酸铵(常温保存)。2. 其它试剂:BSA、甘油、β-巯基乙醇、溴酚兰、Tween20、TEMED、丽春红、考马斯亮蓝G250/R250(常温保存);ECL发光液(4℃保存);二抗、蛋白分子量marker、PMSF(-20℃保存)。3. 耗材:PVDF膜(millipore)、滤纸、枪头。4. 缓冲液:30% Acr/Bis(棕色瓶)、10% 过硫酸铵、1×转膜缓冲液、5%BSA或脱脂奶粉封闭液(4℃保存);1.5M Tris-HCl(pH8.8)、1M Tris-HCl(pH6.8)、10% SDS 、5× SDS凝胶还原型加样缓冲液、10× TBS、10×Tris-Gly电泳缓冲液、10×转膜缓冲液、1× Tris-Gly电泳缓冲液、TBST(常温保存)。5. 缓冲液配制:a) 30% Acr/Bis:丙稀酰胺29.2g,甲叉双丙稀酰胺0.8g,双蒸蒸馏水溶解定容至100ml,过滤备用,4°C棕色瓶保存。b) 1.5M Tris-HCl(pH8.8):Tirs 18.2g,溶于蒸馏水中,定容至100mL。加入盐酸调节pH值至8.8,常温保存。c) 1M Tris-HCl(pH6.8):Tirs 12.1g,溶于蒸馏水中,定容至100ml。加入盐酸调节pH值至6.8,常温保存。d) 10% SDS:SDS 20.0g溶于蒸馏水中,定容至200ml,加热至68°C助溶。常温保存。e) 10% 过硫酸铵(AP):过硫酸铵0.1g,溶于1ml 蒸馏水中,现配现用或分装冷冻备用。4°C保存时最多不超过2w。f) 5×SDS凝胶还原型加样缓冲液:0.25 M Tris-HCl (pH 6.8) 1ml、SDS 0.25g、甘油 0.189g、溴酚兰 25mg,双蒸水定容到5ml,使用前加入β-巯基乙醇0.5ml。g) 10× Tris-Gly电泳缓冲液:Tris 30.2g,甘氨酸188g,SDS 10g,加入双蒸水定容至1L。1× Tris-Gly电泳缓冲液:用100ml量筒取100ml 10× Tris-Gly电泳缓冲液,加入到1000ml容量瓶中,用蒸馏水定容到1000ml。h) 10×转膜缓冲液: Tris 30.3g 、甘氨酸151.1g 、定容至800ml。1×转膜缓冲液:10×转膜缓冲液80ml、甲醇200ml, 加蒸馏水720 ml。i) 10× TBS:Tris 24.2g、氯化钠80g,双蒸水定容至1L,调PH 7.6。j) TBST:用100ml量筒取100ml 10× TBS,加入到1L容量瓶中,用蒸馏水定容到1L,再加入1ml Tween 20混合均匀。k) 封闭液:2g BSA或脱脂奶粉,溶于装有40ml TBST的50ml离心管中,配成5% BSA或脱脂奶粉封闭液,现配现用,短期4°C保存,较长时间则冷冻保存。l) 100mM PMSF:称量0.174g PMSF(针状结晶固体)溶于10ml 无水乙醇,震荡混匀,保存在-20°C。m) 2%的丽春红贮备液: 丽春红2g,三氯乙酸30g,磺基水杨酸30g,加水定容至100ml,过滤,常温保存。丽春红染色工作液:2%的丽春红贮备液 1:10 稀释,即加 9 倍的 ddH2O。n)考马斯亮蓝R250染色液:0.25%考马斯亮蓝R250,40%双蒸水, 10% 冰乙酸,50%甲醇混匀,过滤,常温棕色瓶保存。o)考马斯亮蓝R250染色脱色液:常温保存: 67.5%双蒸水,7.5%冰乙酸, 25%甲醇混匀,常温保存。p)考马斯亮蓝G-250染液: 10%磷酸,10%硫酸铵,0.12%考马斯亮蓝G-250, 20%甲醇,常温棕色瓶保存。配制方法:按就次序依次加入10%磷酸,10%硫酸铵,等完全溶解后加入0.12%考马斯亮蓝G-250,等完全溶解后加入20%甲醇混匀,过滤。 分离胶配方 5%浓缩胶配方文章来自:无锡菩禾生物医药技术有限公司编辑于 2020-08-13 15:26蛋白表达细胞生物学分子生物学​赞同 771​​8 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录细

QuickBlock Western封闭液(P0252-100ml)

QuickBlock Western封闭液(P0252-100ml)

微信在线咨询

扫码加微信

快速订购 |

联系我们

选择语言:

中文 |

English

登录 |

注册

首页

| 全部产品

| 技术服务

| 质粒平台

| 订购中心

| 免费试用

| 促销活动

| 技术咨询

| 关于我们

新冠相关产品

试剂

核酸相关

多肽与蛋白

细胞相关

信号转导

抗体

抑制剂激活剂等

常用试剂

耗材

仪器

技术服务

菌种与质粒

>

菌种与培养

酵母相关

病毒构建

感受态及制备

原核载体

真核载体

报告基因质粒

基因表达质粒

荧光探针质粒

昆虫与酵母质粒

植物用质粒

人基因编辑质粒(库)

体外转录用质粒

生物素标记质粒

质粒平台

DNA提取与纯化

>

质粒抽提

DNA纯化胶回收

基因组DNA抽提

DNA操作

>

内切酶与外切酶

修饰酶

DNA连接

重组与克隆

DNA转化

基因突变

基因编辑

反转录与PCR

>

反转录

PCR相关

定量PCR

qPCR内参引物对

qPCR非内参引物对

等温扩增

微生物检测

DNA电泳

>

电泳介质与溶液

DNA分子量标准

电泳染料

DNA标记和检测

>

生物素标记与检测

荧光标记与检测

EMSA相关

DNA甲基化检测

建库与高通量测序

EMSA相关

RNA相关

>

RNA提取

RNA电泳

切割、合成、连接和修饰

RNA保护

RNA病毒

mRNA疫苗相关

无RNA酶试剂

Northern与原位检测

标记与检测

反转录

建库与高通量测序

多肽

>

多肽激素

活性多肽

多肽底物

竞争性多肽

重组蛋白

>

细胞因子

趋化因子

激素

抗体纯化

重组蛋白酶相关

其它重组蛋白

酶及活性检测

>

蛋白酶

生化酶

酶活性检测

蛋白样品制备

>

裂解及蛋白抽提

蛋白酶抑制剂

磷酸酶抑制剂

蛋白修饰酶抑制剂

蛋白表达与纯化

>

原核蛋白表达

蛋白纯化

蛋白修饰与标记

>

蛋白修饰与去修饰

蛋白标记

蛋白检测

>

蛋白定量

预制胶

蛋白分子量标准

蛋白电泳

Western检测

免疫沉淀

免疫染色

ELISA

新生蛋白质检测

细胞株

>

人细胞株

小鼠细胞株

其它种属细胞株

报告基因细胞株

HEK293T基因敲除细胞(库)

过表达稳转细胞株

细胞组织培养

>

培养液相关

血清

细胞组织消化

原代细胞培养

干细胞培养

内毒素检测与清除

支原体检测与清除

细胞冻存

3D培养

细胞粘附

细胞培养耗材

基因表达调控

>

细胞转染

病毒感染

人基因编辑慢病毒(库)

细胞样品制备

>

细胞组分分离

蛋白样品制备

RNA样品制备

DNA样品制备

细胞裂解样品

>

HEK293T基因敲除细胞RIPA裂解液

HEK293T基因敲除细胞Trizol裂解液

细胞增殖与分化

>

干细胞检测

细胞增殖

细胞分化

细胞衰老

细胞死亡与自噬

>

细胞凋亡

细胞坏死

细胞焦亡

自噬

细胞组织染色

>

普通染色

荧光染色

免疫染色

亚细胞研究

>

细胞膜

细胞核

线粒体

内质网

高尔基体

溶酶体

外泌体

植物原生质体

信号小分子检测

>

活性氧相关

一氧化氮相关

代谢小分子相关

钙离子等检测

转录调控

>

报告基因相关

EMSA相关

核转运

荧光探针

>

小分子荧光探针

细胞凋亡荧光探针

细胞器荧光探针

其它荧光探针

抗体制备

>

免疫佐剂

抗体纯化

抗体分析

二抗

>

HRP标记二抗

Biotin标记二抗

ALP标记二抗

荧光标记二抗

常用一抗

>

内参抗体

标签抗体

细胞器标志抗体

细胞标志抗体

对照IgG

敲除验证抗体

修饰抗体

荧光标记一抗

HRP标记一抗

IHC抗体

凋亡与自噬

>

Regulation of Apoptosis

Inhibition of Apoptosis

Death Receptor Signaling

Mitochondrial Control of Apoptosis

Autophagy Signaling

p53 Signaling

细胞代谢

>

Insulin Signaling

AMPK Signaling

Warburg Effect

Hypoxia Signaling

Glucose metabolism

Fatty Acid Metabolism

Endocrinology & Hormones

Transmembrane Transporters

Glutamine Metabolism

Other Metabolism

染色质/表观遗传/细胞周期

>

Protein Acetylation

Histone Methylation

DNA Methylation

Crosstalk Between Protein Modifications

G1/S Checkpoint

G2M/DNA Damage Checkpoint

RNA Editing/Splicing

Epigenetics

DNA Damage and Repair

Nuclear Receptor Signaling

Chromatin Regulation

Cell Cycle Related

细胞骨架/细胞外基质

>

Microtubule Dynamics

Actin Dynamics

Adherens Junction Dynamics

Cytoskeletal Signaling

免疫与炎症

>

Jak/Stat:IL-6 Signaling

NF-κB Signaling

Toll-Like Receptor Signaling

B Cell Receptor Signaling

T Cell Receptor Signaling

Cytokines

Chemokines

Tumor Necrosis Factors

Anti-infection

Interferons

T-Cell/B-Cell Activation

Macrophages

Complement Activation

Other Immune Pathways

MAPK与PI3K/Akt通路

>

MAPK/Erk in Growth & Differentiation

MAPK/Erk in GPCR Signaling

SAPK/JNK Signaling

p38 MAPK Signaling

PI3K/Akt Signaling

mTOR Signaling

MAP Kinase Signaling

Protein Tyrosine Kinase Signaling

神经科学

>

Amyloid & Neurofibrillary Tangles

Dopamine Signaling

Presynaptic Vesicle Transport

Neuronal Signaling

PKC、钙离子及脂信号通路

>

PKC Signaling

Phospholipid Signaling

Protein Posttranslational Modification

干细胞、发育与分化

>

Hippo Signaling

ESC Pluripotency and Differentiation

Stem Cell & Lineage Markers

Wnt/β-Catenin Signaling

Notch Signaling

Hedgehog Signaling

TGF-β Signaling

Angiogenesis

蛋白翻译、折叠和降解

>

Translational Regulation

eIF4E & p70 S6K Pathway

eIF2 Pathway

Ubiquitin/Proteasome

Protein Folding

肿瘤研究

>

Breast Cancer

Tumor Immunology

其它类别一抗

>

ErbB/HER Signaling

Organelle Markers

Coagulation

Microbiology

Growth Factors

Transcription Factors

Signal Transduction

Others

化合物库

>

药物库

天然化合物

凋亡与自噬

>

Regulation of Apoptosis

Inhibition of Apoptosis

Death Receptor Signaling

Mitochondrial Control of Apoptosis

Autophagy Signaling

细胞代谢

>

Insulin Signaling

AMPK Signaling

Warburg Effect

Hypoxia Signaling

Glucose Metabolism

Fatty Acid Metabolism

Transmembrane Transporters

染色质/表观遗传/细胞周期

>

Protein Acetylation

Histone Methylation

Crosstalk Between Protein Modifications

G1/S Checkpoint

G2M/DNA Damage Checkpoint

细胞骨架/细胞外基质

>

Microtubule Dynamics

Actin Dynamics

Adherens Junction Dynamics

免疫与炎症

>

Jak/Stat:IL-6 Signaling

NF-κB Signaling

Toll-Like Receptor Signaling

B Cell Receptor Signaling

T Cell Receptor Signaling

Antimicrobial Signaling

MAPK与PI3K/Akt通路

>

MAPK/Erk in Growth & Differentiation

MAPK/Erk in GPCR Signaling

SAPK/JNK Signaling

p38 MAPK Signaling

PI3K/Akt Signaling

mTOR Signaling

Protein Tyrosine Kinase Signaling

神经科学

>

Dopamine Signaling

Presynaptic Vesicle Trafficking

Neurotransmission

PKC、钙离子及脂信号通路

>

PKC Signaling

Phospholipid Signaling

干细胞、发育与分化

>

Wnt/β-Catenin Signaling

Notch Signaling

Hedgehog Signaling

TGF-β Signaling

蛋白翻译、折叠和降解

>

Translational Regulation

Ubiquitin/Proteasome

其它类别抑制剂激活剂

>

Nuclear Receptor Signaling

ErbB/HER Signaling

Angiogenesis

Coagulation

Anti COVID-19

生化试剂

>

糖类

氨基酸

多肽与蛋白

脂类

核酸相关

辅酶

代谢物

激素

维生素

微生物培养

显色剂

去垢剂

螯合剂

溶剂

氧化还原试剂

其它生化试剂

分离纯化试剂

造模试剂

染色剂

校正溶液

点击化学

常用酶

>

核酸酶

蛋白酶

其它常用酶

抗生素与防腐剂

>

哺乳动物细胞培养

细菌培养

真菌培养

防腐剂

消毒剂

缓冲试剂/缓冲液

>

缓冲试剂

pH缓冲液

电泳/转膜缓冲液

其它缓冲液

储存液

>

钠盐溶液

其它储存液

植物相关

>

植物培养

植物激素

植物样品制备

农杆菌与感受态

植物质粒

原生质体分离与转染

植物基因扩增与鉴定

微生物检测

>

微生物活性检测

试剂存放

>

离心管

离心管架

离心管盒

冻存盒

冰盒

蓝盖瓶

试剂瓶

配制与过滤

>

量筒量杯

搅拌棒搅拌子

PH试纸

滤纸

滤膜

滤器

吸液与移液

>

枪头

移液管

巴氏吸管

枪头盒

加样槽

磁性分离

适配器

注射器

移液器支架

微孔板及相关

>

96孔板

384孔板

96孔深孔板

酶标条

酶标条架

96孔点样板

UV板

超低吸附/3D培养

培养板

封板膜

细胞培养

>

培养皿

培养瓶

培养板

冻存管

移液管

离心管

细胞刮铲

细胞过滤

血清瓶

三角摇瓶

PCR耗材

>

PCR管

PCR排管和盖

PCR板

PCR板封板膜

PCR管盒

印迹与检测

>

PVDF膜

硝酸纤维素膜

尼龙膜

电泳及转印

洗膜盒

胶片

暗盒与增感屏

染色与检测

>

载玻片

盖玻片

存储盒

染色缸染色架

其它染色耗材

防护用品

>

手套

工作服

一次性帽子

一次性口罩

一次性鞋套

分离纯化

>

空柱管

超滤管

透析袋/透析袋夹

配件

切胶器

金属器械

>

剪刀

镊子

刀柄刀片

钳子

缝合针

小动物手术器械

注射器

其它耗材

>

研磨耗材

记号笔

其它

碧云天高品质仪器

>

核酸电泳

蛋白电泳

转印设备

样品处理

化学发光分析仪

电动移液器

金属浴

脱色摇床

混匀仪

离心机

搅拌器

其它

混合与破碎

>

脱色摇床

细菌培养摇床

漩涡振荡器

混匀仪

搅拌器

超声破碎仪

匀浆机

其它混合破碎仪器

温度控制

>

培养箱

水浴锅

干式恒温器

干燥箱、烘箱

其它温控设备

分离与浓缩

>

离心机

冷冻干燥机

离心浓缩仪

氮吹仪

旋转蒸发仪

泵与真空设备

>

真空泵及其它泵

蠕动泵

安全与防护

>

生物安全柜

超净工作台

危化品安全柜

通风橱

其它安全防护设备

清洗净化消毒

>

洗瓶机

洗板机

超声波清洗器

纯水仪

灭菌设备

冷冻冷藏

>

制冰机

低温冰箱

超低温冰箱

液氮罐

超低温冰箱、液氮罐分隔架

层析柜

核酸蛋白分析

>

PCR仪

电泳设备

蛋白转印设备

核酸提取设备

观察与成像

>

紫外分析仪

凝胶成像分析系统

光学检测

>

分光光度计

化学发光分析仪

酶标仪

其它光学检测仪器

组织与动物

>

切片机

组织包埋机

组织脱水机

染色机

其它动物实验仪器

理化分析

>

移液器类

天平

pH计

电导仪

氧化还原电位仪

溶氧仪

食品安全检测仪

小型计量仪表

>

定时器

核酸相关

>

引物合成

0.5元/nt起

RNA合成

520元/条起

基因合成

450元/条起

质粒构建

点突变423元起

定量PCR

50元/3复孔起

高通量测序

RNA-seq 998元起

SNP基因分型

4.5元/位点/样本起

质粒DNA制备

1mg 1430元起

DNA测序

15元/反应起

植物基因

PCR60元/3复孔起

环形RNA合成

RNA环化1288元/起

代为检测服务

10元/样起

蛋白相关

>

多肽合成

21元/氨基起

蛋白表达纯化

5000元/样起

抗体定制

兔多抗2800元/样起

Western Blot

500元/膜起

ELISA

代测300元/板起

免疫荧光

拍照30元/片起

免疫组化

60元/片起

免疫共沉淀

1800/样品起

蛋白质组学

1800元/样起

生化检测

代测10元/样起

代为检测服务

10元/样起

细胞相关

>

细胞增殖检测

600元/板起

细胞凋亡检测

100元/样起

CRISPR/Cas9

9999元/株起

病毒包装

腺病毒5590元起

细胞系STR鉴定

600元/样起

细胞株

648元/瓶起

石蜡切片

10元/切片起

支原体检测

280元/样起

代为检测服务

10元/样起

信号转导相关

>

代谢组学

900元/样起

外泌体检测

298元/样起

EMSA探针合成

638元/管起

代为检测服务

10元/样起

药物与疾病

>

化合物定制合成

1800元/样起

类器官

60元/基因/样起

动物药效学实验

肿瘤模型1200元起

代为检测服务

10元/样起

其它

>

SCI论文服务

润色0.6元/字起

整体课题服务

询价

COVID-19核酸检测

>

病毒qRT-PCR检测

病毒RNA提取

病毒RNA反转录

qPCR

等温扩增

PCR相关

阳性对照

清除环境污染

RNase Inhibitor

病毒保存

COVID-19机理研究

>

新冠病毒结构蛋白表达质粒

新冠病毒重组蛋白

新冠病毒结构蛋白抗体

主蛋白酶相关

ACE2相关

炎症和免疫反应监测

COVID-19药物研发

>

蛋白酶

蛋白酶荧光底物

抑制剂筛选试剂盒

FDA批准药物库化合物

COVID-19相关仪器

>

仪器

COVID-19技术服务

>

服务

订货电话

400-1683301

800-8283301

电话订货时间:

工作日9:00-17:00

订货邮件

order@beyotime.com

订货QQ

4001683301

微信在线咨询

订货须知

订单下载

碧云天订单.xls

资源下载

试剂>

多肽与蛋白>

蛋白检测>

Western检测

P0252

Y

QuickBlock™ Western封闭液

一键复制产品信息

产品编号:

P0252-100ml

产品包装:100ml

选择包装

15ml

100ml

500ml

说明书下载

123.00

10

价格:

¥

123.00

促销价:

¥

123.00

促销价:

¥

123.00

加入购物车

产品简介

使用说明

产品文件

相关产品

相关论文

产品问答

产品编号

产品名称

产品包装

产品价格

P0252FT

QuickBlock™ Western封闭液(试用装)

15ml

.00元

P0252-100ml

QuickBlock™ Western封闭液

100ml

123.00元

P0252-500ml

QuickBlock™ Western封闭液

500ml

498.00元

碧云天生产的QuickBlock™ Western封闭液(QuickBlock™ Blocking Buffer for Western Blot)是最新一代的快速高效Western封闭液,总体效果显著优于传统的基于BSA(牛血清白蛋白)、脱脂奶粉、酪蛋白(Casein)等的封闭液及国外同类产品,主要用于Western blot (WB)实验中PVDF膜或硝酸纤维素膜(nitrocellulose membrane, NC膜)的封闭,也可以用于Western实验中一抗或二抗的稀释。

QuickBlock™ Western封闭液快速高效。封闭时间通常仅需5-15分钟,并且和BSA、脱脂奶粉、酪蛋白等传统的Western封闭液以及国外同类的快速封闭液相比,显示出更强的信噪比(参考图1)。

QuickBlock™ Western封闭液封闭后背景极低。本封闭液不含血清和白蛋白,确保极高的信噪比。

QuickBlock™ Western封闭液兼容性好,兼容辣根过氧化物酶(Horseradish peroxidase, HRP)、碱性磷酸酶(Alkaline phosphatase, AP)和生物素标记的二抗。本产品中添加了不影响HRP和AP活性的防腐剂,不会干扰HRP或AP标记二抗的检测。同时本产品不含生物素,不会干扰基于生物素的检测。

QuickBlock™ Western封闭液使用便捷。本产品无需添加任何额外的试剂,可以直接用于印迹膜的封闭。

本产品与BSA及国外同类产品的封闭效果对比参见图1。在相同样品和实验条件下,仅封闭液及封闭时间存在如下图所示的差异时,碧云天的QuickBlock™ Western封闭液封闭后的整体背景明显低于BSA封闭后的背景,而且目的条带亮度明显高于国外同类品牌产品。

图1. QuickBlock™ Western封闭液与BSA及国外同类产品的封闭效果比较。每组实验从左到右依次为:5µl蛋白Marker,2.5µg蛋白量的HeLa细胞裂解液,5µg蛋白量的HeLa细胞裂解液。请注意对于Antibody A,QuickBlock™封闭液比BSA和国外同类产品具有更低的背景,并且和国外同类产品相比信号明显更强。对于Antibody B,QuickBlock™封闭液比BSA具有更低的背景,和国外同类产品相比信号明显更强。实际实验结果会因样品、抗体、实验条件等的不同而存在差异,图中数据仅供参考。

关于不同封闭液的比较和选择,请参考碧云天的相关网页:http://www.beyotime.com/support/blocking-buffer.htm。

按照每张膜封闭需要5-10ml QuickBlock™ Western封闭液计算,一个100ml包装的本产品可以封闭10-20张膜,一个500ml包装的本产品可以封闭50-100张膜。

包装清单:

产品编号

产品名称

包装

P0252-100ml

QuickBlock™ Western封闭液

100ml

P0252-500ml

QuickBlock™ Western封闭液

500ml

说明书

1份

保存条件:

4℃保存,一年有效。长期不使用可以-20℃保存。

注意事项:

通常本产品用于PVDF膜及NC膜时的封闭时间为5-15分钟。对于一些背景非常高的抗体,可以尝试将封闭时间延长为30-60分钟。此外,如有特殊需要,也完全可以4℃封闭过夜。

由于没有任何一种封闭液是适用于所有实验体系的,因此对于一些特殊的实验,可能需要根据具体情况考虑使用其它更合适的封闭液。

取放PVDF膜和NC膜应使用平头镊子,并仅轻轻夹取其边角,操作过程须避免膜表面产生划痕、折痕或压痕等痕迹。

PVDF膜一经浸润和活化,需一直保持湿润,根据Western进行到的具体步骤可放置于western转膜液或洗涤液等适当溶液中,否则可能会产生难以封闭的异常背景。

为进一步提高信噪比,推荐同时使用QuickBlock™Western一抗稀释液(P0256)和QuickBlock™ Western二抗稀释液(P0258)进行一抗及二抗的稀释。

本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

1. 完成转膜后,用Western洗涤液洗涤印迹膜1-2分钟。

2. 根据膜的大小,在平皿或者其它适当容器中倒入一定体积的QuickBlock™ Western封闭液,确保封闭液后续能充分覆盖膜即可。对于常规的western,一张约6.6×8.5cm的膜推荐使用约10ml左右的封闭液。

3. 用平头镊夹住膜的一角,将膜放置在QuickBlock™ Western封闭液中,使封闭液完全浸没膜,置于水平摇床上封闭约10分钟(通常5-15分钟均可;经多种抗体的测试封闭10分钟的效果很多时候会显著优于常规的BSA封闭1小时的效果)。

4. 封闭后的膜即可用于一抗孵育等后续实验。详细的Western操作可以参考如下的相关网页:

http://www.beyotime.com/support/western.htm。

相关产品:

产品编号

产品名称

包装

P0023A-100ml

Western一抗稀释液

100ml

P0023A-500ml

Western一抗稀释液

500ml

P0023B-100ml

Western封闭液

100ml

P0023B-500ml

Western封闭液

500ml

P0023D-100ml

Western二抗稀释液

100ml

P0023D-500ml

Western二抗稀释液

500ml

P0220

QuickBlock™封闭液(PBS)

100ml

P0222

QuickBlock™封闭液(PBSTw) 

100ml

P0226

QuickBlock™封闭液(PBSTx)

100ml

P0228

QuickBlock™封闭液(TBS)

100ml

P0231

QuickBlock™封闭液(TBSTw)

100ml

P0233

QuickBlock™封闭液(TBSTx) 

100ml

P0235

QuickBlock™封闭液(10X) 

100ml

P0252-100ml

QuickBlock™ Western封闭液

100ml

P0252-500ml

QuickBlock™ Western封闭液

500ml

P0256-100ml

QuickBlock™ Western一抗稀释液

100ml

P0256-500ml

QuickBlock™ Western一抗稀释液

500ml

P0258-100ml

QuickBlock™ Western二抗稀释液

100ml

P0258-500ml

QuickBlock™ Western二抗稀释液

500ml

物质安全数据单

输入右侧验证码点击下载:

下载

质检证书

输入批号搜寻COA

搜索

相关产品请点击如下按钮:

Western检测

使用本产品的文献:

1. Ding M1, 2, 3, Ning J2, Feng N2, Li Z2, Liu Z2, Wang Y2, Wang Y2, Li X3, Huo C3, Jia X3, Xu R3, Fu F2, Wang X3, Pei J2.

.

Dynamin‐related protein 1‐mediated mitochondrial fission contributes to post‐traumatic cardiac dysfunction in rats and the protective effect of melatonin.

J Pineal Res.

2018 Jan;64(1). doi: 10.1111/jpi.12447.

(IF 14.528)

2. Zhao Z1, Zhao Y1, Zhuang XY2, Lo WC3, Baker MAB4, Lo CJ5, Bai F

.

Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging.

Nature Communications.

2018 May 14;9(1):1885.

(IF 11.878)

3. Pei-PeiZhao, Hao-RanHu, Jia-YuLiu, Qin-FeiKe, Xiao-YuanPeng, HaoDing, Ya-PingGuo.

.

Gadolinium phosphate/chitosan scaffolds promote new bone regeneration via Smad/Runx2 pathway.

CHEM ENG J.

2019 March 1;359: 1120-1129.

(IF 10.652)

4. Lishan Huang, Zhou Chen, Ruiyu Chen, Lu Lin, Lingjia Ren, Meilian Zhang, Libin Liu

.

Increased fatty acid metabolism attenuates cardiac resistance to β-adrenoceptor activation via mitochondrial reactive oxygen species: A potential mechanism of hypoglycemia-induced myocardial injury in

Redox Biol.

2022 Jun:52:102320. doi: 10.1016/j.redox.2022.102320.

(IF 9.986)

5. Jun Yan Xu, Yu Yan Xiong, Rui Jie Tang, Wen Yang Jiang, Yu Ning, Zhao Ting Gong, Pei Sen Huang, Gui Hao Chen, Jun Xu, Chun Xiao Wu, Meng Jin Hu, Jing Xu, Yi Xu, Cun Rong Huang, Chen Jin, Xiao Tong Lu, Hai Yan Qian, Xiang Dong Li, Yue Jin Yang

.

Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction

Cardiovasc Res.

2022 Jul 20;118(9):2165-2178. doi: 10.1093/cvr/cvab237.

(IF 8.168)

6. Chao Zhou, Mengyu Liu, Xiang Mei, Qian Li, Wenjuan Zhang, Ping Deng, Zhixin He, Yu Xi, Tong Tong, Huifeng Pi, Yonghui Lu, Chunhai Chen, Lei Zhang, Zhengping Yu, Zhou Zhou, Mindi He

.

Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro

Sci Total Environ.

2021 Aug 20;783:147014. doi: 10.1016/j.scitotenv.2021.147014.

(IF 6.551)

7. Song Yu, Bingxuan Jia, Na Liu, Dianzhen Yu, Shuo Zhang, Aibo Wu

.

Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells

Sci Total Environ.

2021 Sep 15;787:147405. doi: 10.1016/j.scitotenv.2021.147405.

(IF 6.551)

8. Long J, Xiao Y, Liu L, Cao Y.

.

The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs.

J NANOBIOTECHNOL.

2017 Nov 10;15(1):80.

(IF 6.518)

9. Long J, Xiao Y, Liu L, Cao Y.

.

The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human veinendothelial cells (HUVECs) in vitro: role of length of MWCNTs.

J NANOBIOTECHNOL.

2017 Nov 10;15(1):80.

(IF 6.518)

10. Hu H1, Zhao P2, Liu J2, Ke Q2, Zhang C1, Guo Y3, Ding H4.

.

Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway.

J NANOBIOTECHNOL.

2018 Nov 29;16(1):98.

(IF 6.518)

11. Xiaoqin Tan, Chunpu Li, Ruirui Yang, Sen Zhao, Fei Li, Xutong Li, Lifan Chen, Xiaozhe Wan, Xiaohong Liu, Tianbiao Yang, Xiaochu Tong, Tingyang Xu, Rongrong Cui, Hualiang Jiang, Sulin Zhang, Hong Liu, Mingyue Zheng

.

Discovery of Pyrazolo[3,4- d]pyridazinone Derivatives as Selective DDR1 Inhibitors via Deep Learning Based Design, Synthesis, and Biological Evaluation

J Med Chem.

2022 Jan 13;65(1):103-119. doi: 10.1021/acs.jmedchem.1c01205.

(IF 6.205)

12. Chen GL, Ye T1, Chen HL3, Zhao ZY4, Tang WQ4, Wang LS3, Xia JL1, 4.

.

Xanthine dehydrogenase downregulation promotes TGFβ signaling and cancer stem cell-related gene expression in hepatocellular carcinoma.

Oncogenesis.

2017 Sep 25;6(9):e382.

(IF 6.119)

13. Weijie Zhong, Juan Cheng, Xiaosheng Yang, Wenwu Liu, Yi Li

.

Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca2+ Elevation

Transl Stroke Res.

2023 Jun;14(3):409-424. doi: 10.1007/s12975-022-01021-8.

(IF 5.78)

14. Fu C, Yin D, Nie H, Sun D.

.

Notoginsenoside R1 Protects HUVEC Against Oxidized Low Density Lipoprotein (Ox-LDL)-Induced Atherogenic Response via Down-Regulating miR-132.

CELL PHYSIOL BIOCHEM.

2018;51(4):1739-1750.

(IF 5.5)

15. Tengfei Liu, Xiaoyan Liu, Hui Xiong, Cheng Xu, Jianxu Yao, Xiumei Zhu, Jianping Zhou and Jing Yao.

.

Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma.

POLYM CHEM-UK.

2018;9:1827-1839.

(IF 5.342)

16. Xin Dang, Nai-Kei Wong, Yongli Xie, Vengatesen Thiyagarajan, Fan Mao, Xiangyu Zhang, Yue Lin, Zhiming Xiang, Jun Li, Shu Xiao, Zohaib Noor, Yuanqiu He, Yang Zhang, Ziniu Yu

.

Autophagy Dually Induced by AMP Surplus and Oxidative Stress Enhances Hemocyte Survival and Bactericidal Capacity via AMPK Pathway in Crassostrea hongkongensis

Front Cell Dev Biol.

2020 Jun 3;8:411. doi: 10.3389/fcell.2020.00411.

(IF 5.201)

17. Qian Zhou, Hong Cao, Xiaoyi Hang, Huamin Liang, Miaomiao Zhu, Yixian Fan, Jiawei Shi, Nianguo Dong, Ximiao He

.

Midkine Prevents Calcification of Aortic Valve Interstitial Cells via Intercellular Crosstalk

Front Cell Dev Biol.

2021 Dec 15;9:794058. doi: 10.3389/fcell.2021.794058.

(IF 5.201)

18. Yuhan Shu, Xin Sun, Guiqin Ye, Mengting Xu, Zhipan Wu, Caixia Wu, Shouxin Li, Jingkui Tian, Haote Han, Jianbin Zhang

.

DHOK Exerts Anti-Cancer Effect Through Autophagy Inhibition in Colorectal Cancer

Front Cell Dev Biol.

2021 Dec 17;9:760022. doi: 10.3389/fcell.2021.760022.

(IF 5.201)

19. Yihan Wang, Xiang Yuan, Malik Ahsan Ali, Ziyue Qin, Yan Zhang, Changjun Zeng

.

piR-121380 Is Involved in Cryo-Capacitation and Regulates Post-Thawed Boar Sperm Quality Through Phosphorylation of ERK2 via Targeting PTPN7

Front Cell Dev Biol.

2022 Jan 26;9:792994. doi: 10.3389/fcell.2021.792994.

(IF 5.201)

20. Junwen Wang, Xintong Zhu, Limeng Dai, Ziyi Wang, Xingying Guan, Xiaoyin Tan, Jia Li, Mao Zhang, Yun Bai, Hong Guo

.

Supt16 haploinsufficiency causes neurodevelopment disorder by disrupting MAPK pathway in neural stem cells

Hum Mol Genet.

2023 Feb 19;32(5):860-872. doi: 10.1093/hmg/ddac240.

(IF 5.1)

21. Weibo Dai, Xinyi Zhan, Weijie Peng, Xin Liu, Weiwen Peng, Quanxi Mei, Xianjing Hu

.

Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity

Oxid Med Cell Longev.

2021 Dec 18;2021:2617881. doi: 10.1155/2021/2617881.

(IF 5.076)

22. Cheng L, Zhang D, Chen B.

.

Tumor necrosis factor α-induced protein-3 protects zinc transporter 8 against proinflammatory cytokine-induced downregulation.

Exp Ther Med.

2016 Sep;12(3):1509-1514.

(IF 1.785)

23. Chen J, Mao S, Li H, Zheng M, Yi L, Lin JM, Lin ZX.

.

The pathological structure of the perivascular niche in different microvascular patterns of glioblastoma.

PLoS One.

2017 Aug 3;12(8):e0182183.

(IF 2.74)

24. Ding Y, Zheng Y, Liu T, Chen T, Wang C, Sun Q, Hua M, Hua T.

.

Changes in GABAergic markers accompany degradation of neuronal function in the primary visual cortex of senescent rats.

SCI REP-UK.

2017 Nov 2;7(1):14897.

(IF 3.998)

25. Yang D1, Sun C1, Zhang J2, Lin S2, Zhao L2, Wang L1, Lin R1, Lv J1, Xin S1.

.

Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation.

Int J Mol Med.

2018 Jan;41(1):43-50.

(IF 3.098)

26. Liu X1, Wang Z2, Zhang G3, Zhu Q3, Zeng H3, Wang T3, Gao F3, Qi Z3, Zhang J4, Wang R3.

.

Overexpression of asparaginyl endopeptidase is significant for esophageal carcinoma metastasis and predicts poor patient prognosis.

Oncol Lett.

2018 Jan;15(1):1229-1235.

(IF 2.311)

27. Zhang L, Liu J, Zhou F, Wang W, Chen N

.

PGC-1α ameliorates kidney fibrosis in mice with diabetic kidney disease through an antioxidative mechanism.

Mol Med Rep.

2018 Mar;17(3):4490-4498.

(IF 2.1)

28. Wang X, Zou P, He Y, Meng K, Quan F, Zhang Y

.

Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway.

Anim Reprod Sci.

2018 Mar;190:108-118.

(IF 1.66)

29. Liu L, Chang X, Zhang Y, Wu C, Li R, Tang L, Zhou Z

.

Fluorochloridone induces primary cultured Sertoli cells apoptosis: Involvement of ROS and intracellular calcium ions-mediated ERK1/2 activation.

Toxicol In Vitro.

2018 Mar;47:228-237.

(IF 2.959)

30. Chen G1, Li Q1, Luo Y2, Liu T2, Zhou S1, Pan E3, Peng L3.

.

Effect of Notoginsenoside R1 on autologous adipose graft in rats.

MOL MED REP.

2018 Apr;17(4):5928-5933.

(IF 2.1)

31. Guo D1, Hu X2, Zhang H3, Lu C4, Cui G5, Luo X6.

.

Orientin and neuropathic pain in rats with spinal nerve ligation.

Int Immunopharmacol.

2018 May;58:72-79.

(IF 3.943)

32. Song Z1, Yang F1, Du H1, Li X1, Liu J1, Dong M1, Xu X2, 3.

.

Role of artemin in non‐small cell lung cancer.

Thorac Cancer.

2018 May;9(5):555-562.

(IF 2.61)

33. Xu H, Chen J, Si X, Chen M, Pei F, Qiu C, Wu J, Guan X

.

PKR inhibition mediates endotoxin tolerance in macrophages through inactivation of PI3K/AKT signaling.

Mol Med Rep.

2018 Jun;17(6):8548-8556.

(IF 2.1)

34. Yang HW1, Liu XY2, Shen ZF1, Yao W1, Gong XB2, Huang HX3, Ding GH1.

.

An investigation of the distribution and location of mast cells affected by the stiffness of substrates as a mechanical niche.

Int J Biol Sci.

2018 Jun 22;14(9):1142-1152.

(IF 4.858)

35. Sun H1, Shao W2, Liu H2, Jiang Z3.

.

Exposure to 2,4-dichlorophenoxyacetic acid induced PPARβ-dependent disruption of glucose metabolism in HepG2 cells.

ENVIRON SCI POLLUT R.

2018 Jun;25(17):17050-17057.

(IF 3.056)

36. Gao S1, Wang Y2, Li D1, Guo Y1, Zhu M3, Xu S1, Mao J1, Fan G4.

.

TanshinoneIIA Alleviates Inflammatory Response and Directs Macrophage Polarization in Lipopolysaccharide-Stimulated RAW264.7 Cells.

Inflammation.

2018 Sep 14. doi: 10.1007/s10753-018-0891-7.

(IF 3.212)

37. Liu L1, Zhang Y1, Chang X1, Li R2, Wu C1, Tang L3, Zhou Z4.

.

Fluorochloridone perturbs blood-testis barrier/Sertoli cell barrier function through Arp3-mediated F-actin disruption.

Toxicol Lett.

2018 Oct 1;295:277-287.

(IF 3.569)

38. Wang Z, Zhou W, Dong H, Ma X, He Z

.

Dexmedetomidine pretreatment inhibits cerebral ischemia/reperfusion‑induced neuroinflammation via activation of AMPK.

Mol Med Rep.

2018 Oct;18(4):3957-3964.

(IF 2.1)

39. Jin X1, Yu Y1, Zou Q2, Wang M1, Cui Y1, Xie J1, Wang Z1.

.

MicroRNA‐105 promotes epithelial‐mesenchymal transition of nonsmall lung cancer cells through upregulating Mcl‐1.

J Cell Biochem.

2018 Oct 14. doi: 10.1002/jcb.27873.

(IF 4.237)

40. Zhang W1, Chen W1, Li Z1, Ma L1, Yu J1, Wang H1, Liu Z1, Xu B1.

.

Identification and Characterization of Three New Cytochrome P450 Genes and the Use of RNA Interference to Evaluate Their Roles in Antioxidant Defense in Apis cerana cerana Fabricius.

Front Physiol.

2018 Nov 15;9:1608.

(IF 3.367)

41. Lin L, Wang L, Liu Y, Xu C, Tu Y, Zhou J

.

Non‑thermal plasma inhibits tumor growth and proliferation and enhances the sensitivity to radiation in vitro and in vivo.

Oncol Rep.

2018 Dec;40(6):3405-3415.

(IF 3.417)

42. Wu K, Mu XY, Jiang JT, Tan MY, Wang RJ, Zhou WJ, Wang X, He YY, Li MQ, Liu ZH

.

miRNA‑26a‑5p and miR‑26b‑5p inhibit the proliferation of bladder cancer cells by regulating PDCD10.

Oncol Rep.

2018 Dec;40(6):3523-3532.

(IF 3.417)

43. Wu JX, Tong L, Hu L, Xia CM, Li M, Chen QH, Chen FX, Du DS

.

Upregulation of Nav1.6 expression in the rostral ventrolateral medulla of stress-induced hypertensive rats.

Hypertens Res.

2018 Dec;41(12):1013-1022.

(IF 2.941)

44. Ding Y1, 2, Chen T1, Wang Q1, Yuan Y1, Hua T1.

.

Axon initial segment plasticity accompanies enhanced excitation of visual cortical neurons in aged rats.

Neuroreport.

2018 Dec 12;29(18):1537-1543.

(IF 1.394)

45. Shi GH1, Zhou L2.

.

Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6‑mediated pathways in vivo and in vitro.

Mol Med Rep.

2018 Dec;18(6):5191-5197.

(IF 2.1)

46. Liang X, Li B, Huang Q, Liu D, Ma H.

.

Klotho prevents DEX-induced apoptosis in MC3T3-E1 osteoblasts through the NF-κB signaling pathway.

BIOCHEM BIOPH RES CO.

2018 Dec 9;507(1-4):355-361.

(IF 2.985)

47. Li XH1, Wang HP1, Tan J1, Wu YD1, Yang M1, Mao CZ2, Gao SF2, Li H2, Chen H3, Cai WB4.

.

Loss of pigment epithelium-derived factor leads to ovarian oxidative damage accompanied by diminished ovarian reserve in mice.

Life Sci.

2019 Jan 1;216:129-139.

(IF 3.647)

48. Wang X, Meng K, He Y, Wang H, Zhang Y, Quan F

.

Melatonin Stimulates STAR Expression and Progesterone Production via Activation of the PI3K/AKT Pathway in Bovine Theca Cells.

Int J Biol Sci.

2019 Jan 1 15(2):404-415.

(IF 4.858)

49. Liao H, Liu S, Wang H, Su H, Liu Z

.

Enhanced antifungal activity of bovine lactoferrin-producing probiotic Lactobacillus casei in the murine model of vulvovaginal candidiasis.

BMC Microbiol.

2019 Jan 8 19(1):7.

(IF 2.989)

50. Xiao Q, Zeng JH, Zhou H, Qiu QH, Ke B, Deng L, Hu ZM, Roh J, Dai M.

.

Expression and effects of leukemia inhibitory factor on nucleus pulposus degeneration.

Mol Med Rep.

2019 Mar 19(3):2377-2385.

(IF 2.1)

51. Li M, Wang J, Liu Y, Wu J, Li F, Feng S, Du D, Chen F

.

Central changes in the Kv10.2 potassium channel in stress-induced hypertension rats.

Neuroreport.

2019 Jun 12 30(9):637-644.

(IF 1.394)

52. Pan Z, Fan Z, Ma J, Liu H, Shen L, He B, Zhang M

.

Profiling and functional characterization of circulation LncRNAs that are associated with coronary atherosclerotic plaque stability.

Am J Transl Res.

2019 Jun 15 11(6):3801-3815. eCollection 2019.

(IF 3.375)

53. Liu Z, Tian X, Liu W, Xian Y, Chen W, Chen H, Zhou R

.

Development of two antigen-binding fragments to a conserved linear epitope of human adenovirus and their application in immunofluorescence.

PLoS One.

2019 Jun 26 14(6):e0219091.

(IF 2.74)

54. Deng Y, Han Q, Mei S, Li H, Yang F, Wang J, Ge S, Jing X, Xu H, Zhang T

.

Cyclin-dependent kinase subunit 2 overexpression promotes tumor progression and predicts poor prognosis in uterine leiomyosarcoma.

Oncol Lett.

2019 Sep 18(3):2845-2852.

(IF 2.311)

55. Tan Y, Jin Y, Wang Q, Huang J, Wu X, Ren Z

.

Perilipin 5 Protects against Cellular Oxidative Stress by Enhancing Mitochondrial Function in HepG2 Cells.

Cells.

2019 Oct 11 8(10). pii: E1241.

(IF 4.366)

56. Ran K, Yang Z, Zhao Y, Wang X.

.

Transmural pressure drives proliferation of human arterial smooth muscle cells via mechanism associated with NADPH oxidase and Survivin.

Microvasc Res.

2019 Nov 126:103905.

(IF 2.73)

57. Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F

.

Increased Expression of Kv10.2 in the Hippocampus Attenuates Valproic Acid-Induced Autism-Like Behaviors in Rats.

Neurochem Res.

2019 Dec 44(12):2796-2808.

(IF 3.038)

58. Feng Min, Xian Jie Jia, Qin Gao, Fang Niu, Zhi Yuan Hu, Ya Ling Han, Hong Jie Shi, Ying Yu

.

Remote ischemic post-conditioning protects against myocardial ischemia/reperfusion injury by inhibiting the Rho-kinase signaling pathway

Exp Ther Med.

2020 Jan;19(1):99-106. doi: 10.3892/etm.2019.8176.

(IF 1.785)

59. Yongjie Xiong, Qirun Yin, Jing Li, Shaojun He

.

Oxidative Stress and Endoplasmic Reticulum Stress Are Involved in the Protective Effect of Alpha Lipoic Acid Against Heat Damage in Chicken Testes

Animals (Basel).

2020 Feb 27;10(3):384. doi: 10.3390/ani10030384.

60. Jiangbei Yuan, Zihan Zheng, Liting Wang, Haiying Ran, Xiangyu Tang, Xiaodong Xie, Fei Li, Fang Liu, Xiaoyang Wang, Jiale Zhang, Junying Zhang, Yi Huang, Xuefeng Xia, Ying Wan

.

The Dynll1-Cox4i1 Complex Regulates Intracellular Pathogen Clearance via Release of Mitochondrial Reactive Oxygen Species

Infect Immun.

2020 Mar 23;88(4):e00738-19. doi: 10.1128/IAI.00738-19.

(IF 3.201)

61. Yang X, Zhang C, Tie H, Luo J, Wang Y, Wu Q

.

miR-760 exerts an antioncogenic effect in esophageal squamous cell carcinoma by negatively driving fat metabolism via targeting c-Myc.

J Cell Biochem.

2020 Apr 121(4):2950-2961.

(IF 4.237)

62. Feng-Zhi Xin, Ze-Hua Zhao, Rui-Nan Zhang, Qin Pan, Zi-Zhen Gong, Chao Sun, Jian-Gao Fan

.

Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of PPARα

World J Gastroenterol.

2020 May 14;26(18):2203-2220. doi: 10.3748/wjg.v26.i18.2203.

63. Xiangru Zheng, Jinlai Wei, Wenjun Li, Xiaoli Li, Wuyi Wang, Jinbao Guo, Zhongxue Fu

.

PRDX2 removal inhibits the cell cycle and autophagy in colorectal cancer cells

Aging (Albany NY).

2020 Jul 20;12(16):16390-16409. doi: 10.18632/aging.103690.

64. Hui Hou, Ruirui Yang, Xiaohong Liu, Xiaolong Wu, Sulin Zhang, Kaixian Chen, Mingyue Zheng

.

Discovery of triazoloquinoxaline as novel STING agonists via structure-based virtual screening

Bioorg Chem.

2020 Jul;100:103958. doi: 10.1016/j.bioorg.2020.103958.

(IF 4.831)

65. Chufan Yan, Jiangyue Zhao, Yu Qin, Fangkun Zhao, Liyang Ji, Jinsong Zhang

.

Overexpression of ATG4a promotes autophagy and proliferation, and inhibits apoptosis in lens epithelial cells via the AMPK and Akt pathways

Mol Med Rep.

2020 Aug;22(2):1295-1302. doi: 10.3892/mmr.2020.11205.

(IF 2.1)

66. Niya Long, Shuo Peng, Liangzhao Chu, Jun Jia, Minghao Dong, Jian Liu

.

Paclitaxel inhibits the migration of CD133+ U251 malignant glioma cells by reducing the expression of glycolytic enzymes

Exp Ther Med.

2020 Nov;20(5):72. doi: 10.3892/etm.2020.9200.

(IF 1.785)

67. Yi Wu, Heming Cui, Yuying Zhang, Ping Yu, Yuangeng Li, Dan Wu, Yan Xue, Wenwen Fu

.

Inonotus obliquus extract alleviates myocardial ischemia/reperfusion injury by suppressing endoplasmic reticulum stress

Mol Med Rep.

2021 Jan;23(1):77. doi: 10.3892/mmr.2020.11716.

(IF 2.1)

68. Dongmei Ye, Yuxuan Li, Heliang Zhang, Zhiwei Zhou, Yujie Tang, Peng Wu, Qiang Zhao, Zhiwei Zhang

.

Silencing PRSS1 suppresses the growth and proliferation of gastric carcinoma cells via the ERK pathway

Int J Biol Sci.

2021 Mar 1;17(4):957-971. doi: 10.7150/ijbs.52591.

(IF 4.858)

69. Donghua Du, Wenting Lv, Rina Su, Chunwei Yu, Xiaoxia Jing, Nuwenqimuge Bai, Surong Hasi

.

Hydrolyzed camel whey protein alleviated heat stress-induced hepatocyte damage by activated Nrf2/HO-1 signaling pathway and inhibited NF-κB/NLRP3 axis

Cell Stress Chaperones.

2021 Mar;26(2):387-401. doi: 10.1007/s12192-020-01184-z.

70. Cai-Chou Zhao, Hao Guo, Ying Wang, Jiu-Hong Li

.

Comprehensive upstream and downstream regulatory analyses identify miR-675-3p as a potential prognostic biomarker in melanoma

Hum Cell.

2021 Mar;34(2):654-666. doi: 10.1007/s13577-020-00473-0.

(IF 3.463)

71. Jiechun Huang, Fangrui Wang, Xiaotian Sun, Xianglin Chu, Rongrong Jiang, Yiqing Wang, Liewen Pang

.

Myocardial infarction cardiomyocytes-derived exosomal miR-328-3p promote apoptosis via Caspase signaling

Am J Transl Res.

2021 Apr 15;13(4):2365-2378.

(IF 3.375)

72. Shan-Shan Li, Ling-Ling Xie, Zhuang-Zhuang Li, Yong-Jian Fan, Man-Man Qi, Yan-Guo Xi

.

Androgen is responsible for enhanced susceptibility of melatonin against traumatic brain injury in females

Neurosci Lett.

2021 May 1;752:135842. doi: 10.1016/j.neulet.2021.135842.

(IF 2.274)

73. Yanjie Tan, Yi Jin, Sheng Wang, Jianhua Cao, Zhuqing Ren

.

The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells

J Muscle Res Cell Motil.

2021 Jun;42(2):203-217. doi: 10.1007/s10974-020-09585-4.

74. Wenjin Chen, Weiqiang Jia, Cuiying Wu, Lihua Chen, Kai Sun, Ji Wang, Boyun Ding, Ning Liu, Ruxiang Xu

.

The Neurogenic Compound P7C3 Regulates the Aerobic Glycolysis by Targeting Phosphoglycerate Kinase 1 in Glioma

Front Oncol.

2021 Jun 18;11:644492. doi: 10.3389/fonc.2021.644492.

(IF 4.848)

75. Keke Wu, Biao Li, Qiuzhen Lin, Wanghan Xu, Wanyun Zuo, Jiayi Li, Na Liu, Tao Tu, Baojian Zhang, Yichao Xiao, Qiming Liu

.

Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation

Life Sci.

2021 Jun 1;274:119299. doi: 10.1016/j.lfs.2021.119299.

(IF 3.647)

76. Jingfei Zheng, Xuehe Li, Weili Yang, Fang Zhang

.

Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK

J Pharmacol Sci.

2021 Jun;146(2):71-81. doi: 10.1016/j.jphs.2021.02.001.

(IF 2.835)

77. Bin Zeng, Zhiwei Sun, Qiting Zhao, Doudou Liu, Hao Chen, Xiaoshuang Li, H Rosie Xing, Jianyu Wang

.

SEC23A Inhibit Melanoma Metastatic through Secretory PF4 Cooperation with SPARC to Inhibit MAPK Signaling Pathway

Int J Biol Sci.

2021 Jul 13;17(12):3000-3012. doi: 10.7150/ijbs.60866.

(IF 4.858)

78. Li-Min Zhang, Dong-Xue Zhang, Wei-Chao Zheng, Jin-Shu Hu, Lan Fu, Yan Li, Yue Xin, Xu-Peng Wang

.

CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions

Exp Neurol.

2021 Jul;341:113683. doi: 10.1016/j.expneurol.2021.113683.

(IF 4.691)

79. Chuan-Suo Zhang, Qian Han, Zhao-Wei Song, Hong-Yan Jia, Tian-Peng Shao, Yan-Peng Chen

.

Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoKATP signaling pathway

Exp Ther Med.

2021 Aug;22(2):836. doi: 10.3892/etm.2021.10268.

(IF 1.785)

80. Jiaqi Chen, Qiaoya Pan, Yang Bai, Xuepeng Chen, Yi Zhou

.

Hydroxychloroquine Induces Apoptosis in Cholangiocarcinoma via Reactive Oxygen Species Accumulation Induced by Autophagy Inhibition

Front Mol Biosci.

2021 Sep 10;8:720370. doi: 10.3389/fmolb.2021.720370.

(IF 4.188)

81. Guohai Xie, Xinyi Zheng, Zhong Zheng, Ruoyu Wu, Zhixian Yao, Wenjie Huang, Feng Sun, Xingyu Mu, Ke Wu, Junhua Zheng

.

The ceRNA PVT1 inhibits proliferation of ccRCC cells by sponging miR-328-3p to elevate FAM193B expression

Aging (Albany NY).

2021 Sep 13;13(17):21712-21728. doi: 10.18632/aging.203514.

82. Hang-Xing Yu, Wei Lin, Kang Yang, Li-Juan Wei, Jun-Li Chen, Xin-Yue Liu, Ke Zhong, Xin Chen, Ming Pei, Hong-Tao Yang

.

Transcriptome-Based Network Analysis Reveals Hirudin Potentiates Anti-Renal Fibrosis Efficacy in UUO Rats

Front Pharmacol.

2021 Sep 21;12:741801. doi: 10.3389/fphar.2021.741801.

(IF 4.225)

83. Si-Min Zhang, Chuan-Yuan Wei, Qiang Wang, Lu Wang, Lu Lu, Fa-Zhi Qi

.

M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways

Mol Biol Rep.

2021 Sep;48(9):6443-6456. doi: 10.1007/s11033-021-06646-w.

(IF 1.402)

84. Lishan Zhang, Shanhui Ge, Wanmei He, Qingui Chen, Caixia Xu, Mian Zeng

.

Ghrelin protects against lipopolysaccharide-induced acute respiratory distress syndrome through the PI3K/AKT pathway

J Biol Chem.

2021 Sep;297(3):101111. doi: 10.1016/j.jbc.2021.101111.

(IF 4.238)

85. Qudong Lu, Yang Yang, Hengshuai Zhang, Cheng Chen, Jiang Zhao, Zhenxing Yang, Yi Fan, Longkun Li, Huan Feng, Jingzhen Zhu, Shanhong Yi

.

Activation of GPR18 by Resolvin D2 Relieves Pain and Improves Bladder Function in Cyclophosphamide-Induced Cystitis Through Inhibiting TRPV1

Drug Des Devel Ther.

2021 Nov 15;15:4687-4699. doi: 10.2147/DDDT.S329507.

86. Xin Wang, Wenting Zhang, Jingtao Na, Yanping Huo, Yacheng Wang, Ketong Liu

.

Spironolactone Inhibits Cardiomyocyte Hypertrophy by Regulating the Ca2+/Calcineurin/p-NFATc3 Pathway

J Healthc Eng.

2021 Dec 16;2021:3843830. doi: 10.1155/2021/3843830.

(IF 1.803)

87. Bin Wang, Ping Yu, Wei Lin, Zhaohui Zhai

.

MicroRNA-21-5p Reduces Hypoxia/Reoxygenation-Induced Neuronal Cell Damage through Negative Regulation of CPEB3

Anal Cell Pathol (Amst).

2021 Dec 2;2021:5543212. doi: 10.1155/2021/5543212.

88. Wenting Zhang, Xin Wang, Jing Li, Mingyuan Xu, Xiaolu Ren, Huiying Liu, Lu Xu, Jun Shao

.

Astragaloside IV Reduces OxLDL-Induced BNP Overexpression by Regulating HDAC

J Healthc Eng.

2021 Dec 3;2021:3433615. doi: 10.1155/2021/3433615.

(IF 1.803)

89. Mengmeng Li, Hongjian Lu, Xueyan Wang, Chengwei Duan, Xiangyang Zhu, Yi Zhang, Xin Ge, Feng Ji, Xueqin Wang, Jianbin Su, Dongmei Zhang

.

Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia

Mol Immunol.

2021 Dec;140:250-266. doi: 10.1016/j.molimm.2021.10.017.

(IF 3.641)

90. Li-Tian Ma, Yang Bai, Jie Li, Yu Qiao, Yang Liu, Jin Zheng

.

Elemene Emulsion Injection Administration Reduces Neuropathic Pain by Inhibiting Astrocytic NDRG2 Expression within Spinal Dorsal Horn

Chin J Integr Med.

2021 Dec;27(12):912-918. doi: 10.1007/s11655-021-3438-3.

(IF 1.545)

91. Penghui Xu, Xing Zhang, Jiacheng Cao, Jing Yang, Zetian Chen, Weizhi Wang, Sen Wang, Lu Zhang, Li Xie, Lang Fang, Yiwen Xia, Zhe Xuan, Jialun Lv, Hao Xu, Zekuan Xu

.

The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/MET/mTOR axis

Clin Transl Med.

2022 Jan;12(1):e707. doi: 10.1002/ctm2.707.

92. Min Zhang, Shaoyang Sun, Lei Wang, Xu Wang, Tianhui Chen, Zexu Chen, Yongxiang Jiang

.

Zonular defects in loxl1-deficient zebrafish

Clin Exp Ophthalmol.

2022 Jan;50(1):62-73. doi: 10.1111/ceo.14017.

(IF 2.832)

93. Zhuotong Zeng, Yaoyao Wang, Yangfan Xiao, Jie Zheng, Ruizhen Liu, Xinglan He, Jiangfan Yu, Bingsi Tang, Xiangning Qiu, Rui Tang, Yaqian Shi, Rong Xiao

.

Overexpression of OASL upregulates TET1 to induce aberrant activation of CD4+ T cells in systemic sclerosis via IRF1 signaling

Arthritis Res Ther.

2022 Feb 19;24(1):50. doi: 10.1186/s13075-022-02741-w.

(IF 4.103)

94. Kaixi Wang, Jiafan Wu, Shuna Chen, Hangye Zhao, Puming He, Youying Tu, Bo Li

.

Transcriptome analysis provides insight into the anti-diabetic mechanism of theaflavins in high-fat diet and streptozotocin-induced mice

Food Funct.

2022 Feb 21;13(4):2033-2043. doi: 10.1039/d1fo03856g.

(IF 4.171)

95. Zenglin Cui, Yuwei Li, Gaorui Liu, Yanmeng Jiang

.

miR-103a-3p Silencing Ameliorates Calcium Oxalate Deposition in Rat Kidney by Activating the UMOD/TRPV5 Axis

Dis Markers.

2022 Feb 23:2022:2602717. doi: 10.1155/2022/2602717.

(IF 2.738)

96. Huawei Li, Xiaoling Chen, Zhiqing Huang, Daiwen Chen, Bing Yu, Yuheng Luo, Jun He, Ping Zheng, Jie Yu, Hong Chen

.

Ellagic acid enhances muscle endurance by affecting the muscle fiber type, mitochondrial biogenesis and function

Food Funct.

2022 Feb 7;13(3):1506-1518. doi: 10.1039/d1fo02318g.

(IF 4.171)

97. Xing Wei, Andrew Chia Hao Chang, Haishuang Chang, Shan Xu, Yilin Xue, Yuanxin Zhang, Ming Lei, Alex Chia Yu Chang, Qingyong Zhang

.

Hypoglycemia-Exacerbated Mitochondrial Connexin 43 Accumulation Aggravates Cardiac Dysfunction in Diabetic Cardiomyopathy

Front Cardiovasc Med.

2022 Mar 16:9:800185. doi: 10.3389/fcvm.2022.800185.

98. Yang Bai, Jiaqi Chen, Weijian Hu, Lei Wang, Yulian Wu, Shi'an Yu

.

Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway

Front Pharmacol.

2022 Mar 23:13:847905. doi: 10.3389/fphar.2022.847905.

(IF 4.225)

99. Lu Jiang, Chunhua Chi, Fang Yuan, Meiqi Lu, Dongqing Hu, Lin Wang, Xiaoming Liu

.

Anti-inflammatory effects of anemonin on acute ulcerative colitis via targeted regulation of protein kinase C-θ

Chin Med.

2022 Mar 28;17(1):39. doi: 10.1186/s13020-022-00599-3.

100. Siyuan Chen, Yajie Xue, Yutian Shen, Hao Ju, Xiaodong Zhang, Jinsong Liu, Yongxia Wang

.

Effects of different selenium sources on duodenum and jejunum tight junction network and growth performance of broilers in a model of fluorine-induced chronic oxidative stress

Poult Sci.

2022 Mar;101(3):101664. doi: 10.1016/j.psj.2021.101664.

101. Yinpei Luo, Hong Yang, Xiaojing Yan, Yaran Wu, Guoliang Wei, Xiaoying Wu, Xuelong Tian, Ying Xiong, Guangyan Wu, Huizhong Wen

.

Transcranial Direct Current Stimulation Alleviates Neurovascular Unit Dysfunction in Mice With Preclinical Alzheimer's Disease

Front Aging Neurosci.

2022 Apr 14:14:857415. doi: 10.3389/fnagi.2022.857415.

(IF 4.362)

102. Xiaohong Sun, Keda Zhu, Chengcheng Feng, Jie Zhu, Shuangshuang Chen, Wenkai Tang, Zhifang Wang, Long Xiao, Hong Li, Dechun Geng, Zhirong Wang

.

Paeoniflorin Ameliorates Hyperprolactinemia-Induced Inhibition of Osteoblastogenesis by Suppressing the NF- κ B Signaling Pathway

Int J Endocrinol.

2022 Apr 15:2022:4572033. doi: 10.1155/2022/4572033.

(IF 2.299)

103. Wenwen Su, Leilei Wu, Qichao Liang, Xiaoyue Lin, Xiaoyi Xu, Shikai Yu, Yitong Lin, Jiadong Zhou, Yang Fu, Xiaoyan Gao, Bo Zhang, Li Li, Dan Li, Yongkui Yin, Gaochen Song

.

Extraction Optimization, Structural Characterization, and Anti-Hepatoma Activity of Acidic Polysaccharides From Scutellaria barbata D. Don

Front Pharmacol.

2022 Apr 4:13:827782. doi: 10.3389/fphar.2022.827782.

(IF 4.225)

104. Wenqiang Zhu, Chen Ding, Piaopiao Huang, Juanli Ran, Pingan Lian, Yaxin Tang, Wen Dai, Xiansheng Huang

.

Metformin Ameliorates Hepatic Steatosis induced by olanzapine through inhibiting LXRα/PCSK9 pathway

Sci Rep.

2022 Apr 4;12(1):5639. doi: 10.1038/s41598-022-09610-1.

105. Guanghai Guo, Jin Dong

.

Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway

Bioengineered.

2022 Apr;13(4):11072-11081. doi: 10.1080/21655979.2022.2068755.

(IF 2.205)

106. Ling-Ling Xie, Shan-Shan Li, Yong-Jian Fan, Man-Man Qi, Zhuang-Zhuang Li

.

Melatonin alleviates traumatic brain injury-induced anxiety-like behaviors in rats: Roles of the protein kinase A/cAMP-response element binding signaling pathway

Exp Ther Med.

2022 Apr;23(4):248. doi: 10.3892/etm.2022.11173.

(IF 1.785)

107. Zheng-Rong Gao, Qiong Liu, Jie Zhao, Ya-Qiong Zhao, Li Tan, Shao-Hui Zhang, Ying-Hui Zhou, Yun Chen, Yue Guo, Yun-Zhi Feng

.

A comprehensive analysis of the circRNA-miRNA-mRNA network in osteocyte-like cell associated with Mycobacterium leprae infection

PLoS Negl Trop Dis.

2022 May 2;16(5):e0010379. doi: 10.1371/journal.pntd.0010379.

108. Fang Hong, Guiyan He, Manqi Zhang, Boyang Yu, Chengzhi Chai

.

The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea

Int J Mol Sci.

2022 May 30;23(11):6128. doi: 10.3390/ijms23116128.

(IF 4.556)

109. Cong Zhang, Lijin Zeng, Guoyi Cai, Yuanting Zhu, Yan Xiong, Hong Zhan, Zhen Yang

.

miR-340-5p Alleviates Oxidative Stress Injury by Targeting MyD88 in Sepsis-Induced Cardiomyopathy

Oxid Med Cell Longev.

2022 May 4:2022:2939279. doi: 10.1155/2022/2939279.

(IF 5.076)

110. Tong Yi, Wenxin Ding, Yuanzhen Hao, Lifeng Cen, Jiyang Li, Xunlong Shi, Ting Wang, Daofeng Chen, Haiyan Zhu

.

Neutrophil extracellular traps mediate severe lung injury induced by influenza A virus H1N1 in mice coinfected with Staphylococcus aureus

Microb Pathog.

2022 May:166:105558. doi: 10.1016/j.micpath.2022.105558.

111. Changgui Wu, Shaohua Chen, Yang Liu, Bo Kong, Wei Yan, Tao Jiang, Hao Tian, Zhaoyi Liu, Qi Shi, Yongjun Wang, Qianqian Liang, Xiaobing Xi, Hao Xu

.

Cynarin suppresses gouty arthritis induced by monosodium urate crystals

Bioengineered.

2022 May;13(5):11782-11793. doi: 10.1080/21655979.2022.2072055.

(IF 2.205)

112. Jia-Hui Sun, Ming Huang, Zhou Fang, Tian-Xiao Li, Ting-Ting Wu, Yi Chen, Da-Ping Quan, Ying-Ying Xu, Yu-Ming Wang, Yi Yang, Jian-Long Zou

.

Nerve bundle formation during the promotion of peripheral nerve regeneration: collagen VI-neural cell adhesion molecule 1 interaction

Neural Regen Res.

2022 May;17(5):1023-1033. doi: 10.4103/1673-5374.324861.

(IF 3.171)

113. Shan Shan, Yeping Yang, Jilan Jiang, Bingxin Yang, Yisai Yang, Feng Sun, Junyu Zhang, Yu Lin, Hong Xu

.

Extracellular vesicle-derived long non-coding RNA as circulating biomarkers for endometriosis

Reprod Biomed Online.

2022 May;44(5):923-933. doi: 10.1016/j.rbmo.2021.11.019.

(IF 3.218)

114. Zeyu Liu, Moli Huang, Yue Hong, Shaoyang Wang, Yongle Xu, Cheng Zhong, Jingyuan Zhang, Zhengping Zhuang, Shan Shan, Tao Ren

.

Isovalerylspiramycin I suppresses non-small cell lung carcinoma growth through ROS-mediated inhibition of PI3K/AKT signaling pathway

Int J Biol Sci.

2022 May 21;18(9):3714-3730. doi: 10.7150/ijbs.69989.

(IF 4.858)

115. Yanqi Zhong, Yang Zhang, Weifang Liu, Yin Zhao, Li Zou, Xiaoxia Liu

.

TLR4 Modulates Senescence and Paracrine Action in Placental Mesenchymal Stem Cells via Inhibiting Hedgehog Signaling Pathway in Preeclampsia

Oxid Med Cell Longev.

2022 Jun 14:2022:7202837. doi: 10.1155/2022/7202837.

(IF 5.076)

116. Ruru Gao, Qiong Luo, Yang Li, Liming Song, Junnan Stephen Cai, Ying Xiong, Fei Yan, Jianhua Liu

.

Biosynthetic Nanobubble-Mediated CRISPR/Cas9 Gene Editing of Cdh2 Inhibits Breast Cancer Metastasis

Pharmaceutics.

2022 Jun 30;14(7):1382. doi: 10.3390/pharmaceutics14071382.

(IF 4.421)

117. Shuai Zhang, Mengyu Xing, Gaojun Chen, Lei Tong, Haili Zhang, Dongshu Du

.

Up-regulation of miR-335 and miR-674-3p in the rostral ventrolateral medulla contributes to stress-induced hypertension

J Neurochem.

2022 Jun;161(5):387-404. doi: 10.1111/jnc.15589.

(IF 4.066)

118. Yuanyuan Wu, Wensi Zhu, Ainiwaer Rouzi, Lin Tong, Linxiao Han, Juan Song, Jianwen Ding, Yu Yan, Miao Li, Ting Pan, Jie Liu, Qin Wang, Yuanlin Song, Jie Shen, Jian Zhou

.

The traditional Chinese patented medicine Qingke Pingchuan granules alleviate acute lung injury by regenerating club cells

Pulm Circ.

2022 Jul 1;12(3):e12138. doi: 10.1002/pul2.12138.

(IF 2.205)

119. Sheng He, Lu Li, Haifan Chen, Xiaoli Hu, Wendi Wang, Hui Zhang, Ruiping Wei, Xiaoxiao Zhang, Yaosheng Chen, Xiaohong Liu

.

PRRSV Infection Induces Gasdermin D-Driven Pyroptosis of Porcine Alveolar Macrophages through NLRP3 Inflammasome Activation

J Virol.

2022 Jul 27;96(14):e0212721. doi: 10.1128/jvi.02127-21.

(IF 4.501)

120. Huijie Zhang, Zhixin He, Ping Deng, Muxue Lu, Chao Zhou, Lingling Yang, Zhengping Yu

.

PIN1-mediated ROS production is involved in antagonism of N-acetyl-L-cysteine against arsenic-induced hepatotoxicity

Toxicol Res (Camb).

2022 Jul 8;11(4):628-643. doi: 10.1093/toxres/tfac040.

121. Xinyi Zhan, Weijie Peng, Zhuqiang Wang, Xin Liu, Weibo Dai, Quanxi Mei, Xianjing Hu

.

Polysaccharides from Garlic Protect against Liver Injury in DSS-Induced Inflammatory Bowel Disease of Mice via Suppressing Pyroptosis and Oxidative Damage

Oxid Med Cell Longev.

2022 Aug 16:2022:2042163. doi: 10.1155/2022/2042163.

(IF 5.076)

122. Cong Pang, Sen Gao, Xun-Zhi Liu, Xiao-Jian Li, Zheng Peng, Hua-Sheng Zhang, Yan Zhou, Xiang-Xin Chen, Tao Tao, Yue Lu, Wei Li, Chun-Hua Hang

.

Astrocytic CD24 Protects Neuron from Recombinant High-Mobility Group Box 1 Protein(rHMGB1)-Elicited Neuronal Injury

Brain Sci.

2022 Aug 23;12(9):1119. doi: 10.3390/brainsci12091119.

(IF 3.332)

123. Tianyang Lan, Kang Zhang, Feifei Lin, Qifu He, Shenghui Wu, Zhiming Xu, Yong Zhang, Fusheng Quan

.

Effects of MICU1-Mediated Mitochondrial Calcium Uptake on Energy Metabolism and Quality of Vitrified-Thawed Mouse Metaphase II Oocytes

Int J Mol Sci.

2022 Aug 3;23(15):8629. doi: 10.3390/ijms23158629.

(IF 4.556)

124. Leyu Li, Guoxin Huang, Tingbo Chen, Hui Lin, Ruiyan Xu, Jinyan Cheng, Ying Hu, Weibo Dai, Gengting Dong

.

Fufang Fanshiliu Decoction Revealed the Antidiabetic Effect through Modulating Inflammatory Response and Gut Microbiota Composition

Evid Based Complement Alternat Med.

2022 Oct 10:2022:3255401. doi: 10.1155/2022/3255401.

125. Xiaoyong Chen, Ziwei Li, Shuaiwei Wang, Guangzhi Tong, Keyuan Chen, Yan Zhao

.

Proteomic analysis reveals zinc-finger CCHC-type containing protein 3 as a factor inhibiting virus infection by promoting innate signaling

Virus Res.

2022 Oct 2:319:198876. doi: 10.1016/j.virusres.2022.198876.

(IF 2.934)

126. Mu-Zi Li, Xiao-Yang Wen, Xiao-Qiang Liu, Yu-Qing Wang, Lei Yan

.

LPS-Induced Activation of the cGAS-STING Pathway is Regulated by Mitochondrial Dysfunction and Mitochondrial DNA Leakage in Endometritis

J Inflamm Res.

2022 Oct 5:15:5707-5720. doi: 10.2147/JIR.S374318.

127. Yueshuai Liu, Hongxiang Ding, Yuze Yang, Yan Liu, Xin Cao, Tao Feng

.

Progesterone Induces Apoptosis and Steroidogenesis in Porcine Placental Trophoblasts

Animals (Basel).

2022 Oct 8;12(19):2704. doi: 10.3390/ani12192704.

128. Hai-Qun Dong, Shi-Jing Liang, Yu-Ling Xu, Yi Dai, Na Sun, Dong-Hong Deng, Peng Cheng

.

Liproxstatin‑1 induces cell cycle arrest, apoptosis, and caspase‑3/GSDME‑dependent secondary pyroptosis in K562 cells

Int J Oncol.

2022 Oct;61(4):119. doi: 10.3892/ijo.2022.5409.

(IF 3.899)

129. Yangjun Yang, Xi Li, Zonghan Liu, Xinyu Ruan, Huihui Wang, Qiang Zhang, Lu Cao, Luchen Song, Yinghong Chen, Yi Sun

.

Moderate Treadmill Exercise Alleviates NAFLD by Regulating the Biogenesis and Autophagy of Lipid Droplet

Nutrients.

2022 Nov 20;14(22):4910. doi: 10.3390/nu14224910.

(IF 4.546)

130. Zhilan Peng, Jialong Gao, Weimin Su, Wenhong Cao, Guoping Zhu, Xiaoming Qin, Chaohua Zhang, Yi Qi

.

Purification and Identification of Peptides from Oyster ( Crassostrea hongkongensis) Protein Enzymatic Hydrolysates and Their Anti-Skin Photoaging Effects on UVB-Irradiated HaCaT Cells

Mar Drugs.

2022 Nov 28;20(12):749. doi: 10.3390/md20120749.

(IF 4.073)

131. Yu Liu, Yan Zhang, Huanhuan Zhu, Wenzhi Shen, Zheng Chen, Jian Bai, Tian Shuang, Qi Chen

.

Aucubin administration suppresses STING signaling and mitigated high-fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice

Food Chem Toxicol.

2022 Nov:169:113422. doi: 10.1016/j.fct.2022.113422.

(IF 4.679)

132. Fan Wang, Yishan Lu, Junming Cao

.

Dynamics impacts of oxytetracycline on growth performance, intestinal health and antibiotic residue of grouper in exposure and withdrawal treatment

Ecotoxicol Environ Saf.

2022 Dec 1:247:114203. doi: 10.1016/j.ecoenv.2022.114203.

133. Tao Ma, Yan Chen, Zhi-Gang Yi, Jia Liu, Yan-Hong Li, Jun Bai, Wen-Ting Tie, Mei Huang, Xiao-Feng Zhu, Ji Wang, Juan Du, Xiu-Qin Zuo, Qin Li, Fan-Li Lin, Liu Tang, Jing Guo, Hong-Wen Xiao, Qian Lei, Xiao-Li Ma, Li-Juan Li, Lian-Sheng Zhang

.

NORAD promotes multiple myeloma cell progression via BMP6/P-ERK1/2 axis

Cell Signal.

2022 Dec:100:110474. doi: 10.1016/j.cellsig.2022.110474.

(IF 3.968)

134. Qiong Fang, Zhiying Li, Ye Xue, Xin Zong, Wenshuang Ma, Guangmin Xi, Xiao Feng Zhang, Zuowei Li

.

Embelin Enhances the Sensitivity of Renal Cancer Cells to Axitinib by Inhibiting HIF Signaling Pathway

Anticancer Agents Med Chem.

2023;23(7):807-816. doi: 10.2174/1871520622666220825155125.

135. Wen Yang, Chunwang Jia, Long Liu, Yu Fu, Yawei Wu, Zhicheng Liu, Ruixuan Yu, Xiaojie Ma, Ao Gong, Fangming Liu, Yanni Xia, Yong Hou, Yuhua Li, Lei Zhang

.

Hypoxia-Inducible Factor-1α Protects Against Intervertebral Disc Degeneration Through Antagonizing Mitochondrial Oxidative Stress

Inflammation.

2023 Feb;46(1):270-284. doi: 10.1007/s10753-022-01732-y.

(IF 3.212)

136. Fanghua Chen, Yin Li, Ling Aye, Yingcheng Wu, Liangqing Dong, Zijian Yang, Qiang Gao, Shu Zhang

.

FUT8 is regulated by miR-122-5p and promotes malignancies in intrahepatic cholangiocarcinoma via PI3K/AKT signaling

Cell Oncol (Dordr).

2023 Feb;46(1):79-91. doi: 10.1007/s13402-022-00736-y.

137. Ye Kuang, Yun Cheng, Jia Wang, Hongyan Li, Xianghong Cao, Yang Wang

.

KIAA1429 mediates epithelial mesenchymal transition in sorafenib-resistant hepatocellular carcinoma through m6A methylation modification

Cancer Med.

2023 Mar;12(6):7222-7233. doi: 10.1002/cam4.5432.

138. Fan Gu, Hailin Wu, Zhuo Huang, Fei Wang, Ruihuan Yang, Zhuan Bian, Miao He

.

The effects of dimethyl fumarate on cytoplasmic LPS-induced noncanonical pyroptosis in periodontal ligament fibroblasts and dental pulp cells

Int Endod J.

2023 Jul;56(7):869-880. doi: 10.1111/iej.13926.

(IF 3.801)

浏览此产品的顾客也同时浏览:

更多

P0023B-100ml

100ml

Western封闭液

P0256-100ml

100ml

QuickBlock™ Western一抗稀释液

P0023A-100ml

100ml

Western一抗稀释液

P0220

100ml

QuickBlock™封闭液(PBS)

P0252-500ml

500ml

QuickBlock™ Western封闭液

P0258-100ml

100ml

QuickBlock™ Western二抗稀释液

P0235

100ml

QuickBlock™封闭液(10X)

P0239

共400ml

QuickBlock™ Western溶液套装(封闭液、洗涤液、一抗和二抗稀释液)

P0260

100ml

QuickBlock™免疫染色封闭液

P0231

100ml

QuickBlock™封闭液(TBSTw)

P0252FT

15ml

QuickBlock™ Western封闭液(试用装)

P0023

共400ml

Western溶液套装(封闭液、洗涤液、一抗和二抗稀释液)

最近查看的产品:

碧云天网站

微信公众号

产品 | Product

产品种类

技术服务

产品订购

支持 | Support

技术咨询

信息反馈

资源下载

实用工具

公司 | Company

关于我们

公司荣誉

急聘人才

合作机会

官方账号 | Official Accounts

碧云天网站

微信公众号

微信视频号

抖音官方号

微博官方号

B站官方号

Copyright 2001-2024 Beyotime Biotechnology. All rights reserved. 碧云天生物版权所有

沪ICP备14016637号-2

上海工商

沪公网安备 31011702005897号

购物车

会员

顶部

用户名:

密码:

校验码:

后续自动登录

找回密码

注册

蛋白质印迹(Western blot)实验方案| Abcam中文官网

蛋白质印迹(Western blot)实验方案| Abcam中文官网

Your browser does not have JavaScript enabled and some parts of this website will not work without it.

为了使您在Abcam官网的浏览体验更顺畅,请使用最新版本的浏览器比如 Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

Maybe later

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

Additional product types

Supporting content

Sign in to your account

Purchase online

致电 +86 21 2070 0500 或 联系我们

我的账户

退出

登录

注册

欢迎光临

登录

您还没有帐户?

注册

我的购物篮

快速订购

Abcam homepage

研究用途的产品

按产品类型

一抗

二抗

免疫测定试剂盒与试剂

细胞与组织成像工具

细胞与生化测定

按产品类型

蛋白质与肽

蛋白质组学工具

激动剂、活化剂、拮抗剂与抑制剂

细胞株和裂解液

多因子分析试剂盒

按研究领域

癌症

心血管

细胞生物学

表观遗传学

代谢

发育生物学

按研究领域

免疫学

微生物学

神经科学

信号转导

干细胞

定制化产品 & 合作关系

定制化产品 & 合作关系

定制化产品和商务合作加速您的诊断和治疗项目

定制化产品

与我们成为伙伴

技术支持

支持中心

获取研究建议和支持

查看支持中心

Protocols

一步一步完成您的实验

查看Protocols

活动通知

会议年历

肿瘤研究

心血管研究

染色质及细胞核信号转导研究

免疫学

神经生物学

干细胞研究

商品展览

实验技术视频

查看最新活动

活动说明、摘要提交、演讲者、注册方式及更多信息

查看全球活动安排

通路

细胞信号转导通路

查看所有通路

查看交叉通路

蛋白质印迹(Western blot)实验方案

Related

Western blot 资源

缓冲液与储备液

推荐对照

Western blot 样本制备

转膜与染色

剥膜

疑难解答提示

用于 western blot 的一抗

用于 western blot 的内参对照

β-肌动蛋白抗体 (ab8227) 内参对照

重组抗体 —— 优点

用于 western blot 的二抗

Anti-Rabbit IgG (HRP) (ab205718)

Anti-Mouse IgG (HRP) (ab205719)

IRDye® 二抗

用于 western blot 的一抗

查找合适的 HRP 二抗

荧光 WB 指南

Western blot 培训

我们的 western blot 实验方案包含溶液、试剂、检测步骤和有用的链接,可指导您完成整个实验。2020 年 12 月 14 日审核Western blot 是一项通过凝胶电泳按照分子量大小分离蛋白,然后再利用特异性抗体识别这些蛋白的技术。免疫检测通常使用由硝酸纤维素或 PVDF(聚偏二氟乙烯)制成的膜。将凝胶紧贴膜放置,蛋白在电流作用下从凝胶迁移到膜上。然后利用目标靶点特异性抗体对膜做进一步处理,再通过二抗和检测试剂让膜显色。目录溶液与试剂:裂解缓冲液溶液与试剂:电泳、转膜及封闭缓冲液样本裂解样本制备上样和跑胶蛋白转膜抗体染色相关链接网络研讨会记录查看下方的 western blot 实验方案视频。

查看更多实验方案视频,请单击访问我们的方案视频库。>> 打印完整的 western blot 实验方案>> 查看我们的 western blot 实验方案图如需提升 western blot 分析技能,请查看我们的免费 western blot 培训(可点播)。

溶液与试剂:裂解缓冲液这些缓冲液在 4 ℃ 下可保存数周,也可分装后在 -20 ℃ 下保存长达 1 年。NP-40 缓冲液150 mM 氯化钠1.0% NP-40(可用 0.1% Triton X-100 代替)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂RIPA 缓冲液(放射免疫沉淀检测缓冲液)150 mM 氯化钠1% IGEPAL CA-6300.5% 脱氧胆酸钠0.1% SDS(十二烷基硫酸钠)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂Tris-HCl20 mM Tris-HCl(三羟甲基氨基甲烷盐酸盐)蛋白酶抑制剂

溶液与试剂:电泳、转膜及封闭缓冲液

Laemmli 2X缓冲液/上样缓冲液4% SDS10% 2-巯基乙醇20% 甘油0.004% 溴酚蓝0.125 M Tris-HCl测定 pH 值并将 pH 值调整至 6.8电泳缓冲液(Tris-Glycine/SDS)25mM Tris base(三羟甲基氨基甲烷游离碱)190mM 甘氨酸0.1% SDS测定 pH 值并将 pH 值调整至 8.3转膜缓冲液(湿转)25mM Tris base (三羟甲基氨基甲烷游离碱)190mM 甘氨酸20% 甲醇测定 pH 值并将 pH 值调整至 8.3对于大于 80 kDa 的蛋白,建议 SDS 终浓度为 0.1%。转膜缓冲液(半干转)48mM Tris base39mM 甘氨酸20% 甲醇0.04% SDS封闭缓冲液3–5% 牛奶或 BSA(牛血清白蛋白)加入 TBST 缓冲液。充分混合后过滤。不过滤可能会有斑点沉积,这种小暗点会在显色时影响实验结果。

样本裂解细胞培养裂解液的制备将细胞培养皿放置冰上并用冰冷的 PBS 洗涤细胞。吸出 PBS,然后加入冰冷的裂解缓冲液(每 107 个细胞/100 mm 培养皿/150 cm2 烧瓶加 1 mL;每 5x106 个细胞/60 mm 培养皿/75 cm2 烧瓶加 0.5 mL)。用预冷的塑料细胞刮刀将贴壁细胞从培养皿上刮下,然后轻轻将细胞悬液转移到预冷的小离心管中。或者,用胰蛋白酶消化细胞并用 PBS 洗涤细胞,然后将细胞重悬浮于小离心管内的裂解缓冲液中。4℃ 下持续振摇 30 分钟。放入微型离心机,在 4°C 下离心。您可能需要根据细胞类型改变离心力和离心时间;指南给出的参考标准是在 12,000 rpm 转速下离心 20 分钟,但须根据您的实验确定(白细胞所需的离心力很小)。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。组织裂解液的制备3.1 用干净器械解剖目标组织,最好在冰上,并且越快越好以防蛋白酶降解。将组织放入圆底离心管或 Eppendorf 管中,浸入液氮中“速冻”。样本在 -80°C 储存备用,或放在冰上立即匀浆。对于一块约 5 mg 的组织,向管中迅速加入约 300 μL 裂解液,并用电动匀浆器匀浆,2X 裂解液冲洗刀片两次,每次 200 μL,然后在 4℃ 下(例如将回旋振荡器放入冰箱)持续振摇 2 小时。裂解液的体积必须根据组织总量决定;蛋白提取物不宜过稀释,以免造成蛋白损失,并尽量减少样本体积,以便凝胶上样。最小浓度为 0.1 mg/mL,最佳浓度为 1-5 mg/mL。在微型离心机中 4℃ 下按照 12,000 rpm 的转速离心 20 分钟。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。样本制备取少量裂解液,用于蛋白质定量分析。测定每种细胞裂解液的蛋白质浓度。确定蛋白质的上样量,并添加等体积的 2X 稀释 Laemmli 样本缓冲液。我们建议使用以下方法对样本进行还原和变性,除非在线抗体数据表显示应使用非还原和非变性条件。对样本进行还原和变性时,将样本缓冲液中的细胞裂解液在 100°C 下煮沸 5 分钟。裂解液可等量分装并在 -20°C 下储存备用。上样和跑胶3.1  将等量的蛋白和分子量标志物上样至 SDS-PAGE 凝胶孔中。细胞裂解液或组织匀浆的总蛋白上样量为 20-30 μg,纯化蛋白的上样量为 10-100 ng。3.2  在 100 V 下跑胶 1-2 小时。时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。建议使用还原型凝胶,除非抗体数据表推荐使用非还原性条件。凝胶百分比取决于目标蛋白的大小:蛋白大小凝胶百分比4–40 kDa20%12–45 kDa15%10-70 kDa12.5%15-100 kDa10%25-100 kDa8%也可以使用梯度凝胶。蛋白从凝胶转移到膜膜可以是硝酸纤维素,也可以是 PVDF。用甲醇活化 PVDF 1 分钟,并在制备转膜层之前用转膜缓冲液冲洗 PVDF。转膜时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。可在封闭步骤之前用丽春红染色法检查蛋白质转膜。转膜层的制备如下:

图 1.制备好的转膜层示例。

​抗体染色

用封闭缓冲液在室温下封闭膜 1 小时或在 4°C 下封闭过夜。用适当稀释的一抗在封闭缓冲液中孵育膜。我们建议在 4°C 下过夜孵育;其他条件可以优化。用 TBST 洗涤膜 3 次,每次 5 分钟。用推荐稀释度的偶联二抗在封闭缓冲液中室温孵育膜 1 小时。用 TBST 洗涤膜 3 次,每次 5 分钟。产生信号时,请遵循试剂盒生产商的建议。除去多余的试剂,并用透明塑料膜覆盖膜。利用暗室显影技术采集化学发光图像,或利用常规图像扫描法采集比色检测图像。

相关链接

查看更多 western blot 实验方案查看所有 Abcam 内参对照。示例内参对照:ab8227 beta actin

所有泳道:beta Actin 抗体 - 内参对照 (ab8227),稀释度为 1/5000泳道 1:HeLa 全细胞提取物泳道 2:酵母细胞提取物泳道 3:小鼠脑组织裂解液查看我们可提供的阳性对照裂解液、封闭肽和阳性对照蛋白清单。查看蛋白质印迹中表现出色的 AbExcel 二抗。观看我们简单易懂的实验方案视频。实验方案由 Abcam 根据 Abcam 实验室使用 Abcam 试剂和产品开展的实验“按原样”提供;在其他条件下使用实验方案得出的结果可能会有所不同。网络研讨会记录Western blot 的目的在于按照分子量大小在凝胶上分离蛋白。然后将蛋白转移到膜上,从而使用抗体对蛋白进行检测。在含有还原剂(如 β-巯基乙醇)的样本缓冲液中,95 ℃ 下加热样本 5 到 10 分钟。这样可以让线性化蛋白带上与其大小成正比的负电荷。将凝胶放入电泳槽中并加入缓冲液,确保孔的顶部被缓冲液覆盖。所用凝胶的丙烯酰胺百分比取决于靶蛋白的分子量。将分子量标志物上样至第一泳道,然后将样本上样至相邻的孔中。所有样本均含有等量蛋白。所有样本完成上样后,添加电泳缓冲液,给电泳槽盖上盖子。打开电源,按照制造商的推荐设置凝胶槽中凝胶的电压。这时应该能够看到凝胶槽中有上升的气泡。跑胶,直到染料前沿充分移动至凝胶。下一阶段是将蛋白从凝胶转移到膜。膜通常由硝化纤维或 PVDF 制成。从凝胶槽中取出凝胶,并小心地将它从塑料盒中释放。切断孔和凝胶脚,并将凝胶放入转膜缓冲液中。将膜和凝胶夹在滤纸和海绵之间,制备转膜层。膜应靠近正极,凝胶应靠近负极。使用小滚筒去除凝胶和膜之间的气泡。夹住关闭的转膜箱,并将它浸入含有转膜缓冲液的转膜槽中。向外室加水,以保持系统冷却,并盖上盖子。打开电源,开始转移蛋白。时间和电压需要优化,请查看制造商的说明。现在蛋白已经从凝胶转移到硝酸纤维素膜上了,可以用抗体检测目标蛋白了。膜可以从盒中取出,现在应该可以看到分子量标志物了。如有需要,可以用丽春红 S 溶液对膜进行染色,从而确认蛋白质的转移。为了防止抗体发生非特异性结合,需要封闭膜。将封闭缓冲液倒在膜上,并置于摇床上轻轻摇动。通常情况下,需要使用 5% 牛奶或牛血清白蛋白(BSA)溶液在室温下孵育两小时或 4℃ 下孵育过夜。应优化封闭缓冲液的时间和类型,请查看您打算使用的一抗的数据表,了解详细信息。膜封闭后,去除封闭缓冲液,在同一溶液中加入稀释的一抗。与之前一样,置于摇床上孵育。通常会在室温下孵育一抗 1 小时或 4℃ 下孵育过夜。抗体浓度和孵育时间需要优化。如需任何指导,请查阅抗体数据表。倒出一抗,用洗涤缓冲液冲洗膜两次。随后在摇床洗涤膜 1 次,时长 15 分钟,再洗涤膜 3 次,每次 10 分钟。洗涤缓冲液通常是含 0.1% 吐温 20 的 Tris 缓冲盐溶液(TBS)或磷酸盐缓冲盐溶液(PBS)。倒掉洗涤缓冲液,在偶联二抗中孵育膜,二抗需先在封闭缓冲液中稀释。通常要在室温下孵育一小时,但抗体浓度和孵育时间需要优化。倒掉二抗,并按照上述步骤清洗膜。有几种不同的检测系统。如果二抗与酶偶联,则成像前,应在合适的底物中孵育膜。如果二抗是荧光偶联二抗,可以直接进入成像步骤。成像时使用 X 射线胶片或数字成像系统。将膜放入成像托盘中。将成像托盘放入成像系统。为了清楚地检测与目标蛋白相关的条带,可能需要优化曝光时间。

通过邮件收到学术资源和促销信息

注册

研究类别(A-Z)

肿瘤研究

心血管研究

细胞生物学

发育生物学

染色质及细胞核信号转导研究

免疫学

代谢

微生物学

神经生物学

信号转导研究

干细胞研究

产品种类(A-Z)

一抗

二抗

生化试剂

亚类对照

流式细胞仪多色选择器

试剂盒

内参对照

细胞裂解液

多肽

蛋白酶

组织切片

蛋白标签及细胞标记物

相关试剂及工具

帮助与支持

技术支持

技术FAQ

实验步骤与建议

购买FAQ

RabMAb 产品

培训课程

按靶标浏览

企业

企业资讯

投资者关系

公司新闻

招贤纳士

关于我们

活动通知

商品展览

会议

全球网站

abcam.com

abcam.co.jp

微信扫码 关注我们

沪ICP备14046373号-1

沪公网安备 31011502007413号

销售条款

网站使用条款

Cookie政策

隐私权政策

法律

© 1998-2024 艾博抗(上海)贸易有限公司版权所有

实验员小哈&Western blot 关于Blocking(封闭)的一些心得 - 哔哩哔哩

哈&Western blot 关于Blocking(封闭)的一些心得 - 哔哩哔哩 实验员小哈&Western blot 关于Blocking(封闭)的一些心得实验员小哈

关注专栏/实验员小哈&Western blot 关于Blocking(封闭)的一些心得实验员小哈&Western blot 关于Blocking(封闭)的一些心得

2020年08月24日 23:57--浏览 ·

--喜欢 ·

--评论

实验员小哈粉丝:10.2万文章:11

关注又来填坑了。在我的western blot操作视频中,使用了一个神奇的成品blocking buffer,室温15分钟,封闭就做完了,封闭效果也不错,关键是省时间。可是,如果实验室没有成品buffer可以用,怎么办?通常,是用1X TBST配制5%的脱脂牛奶,室温,1~2小时。或者用1X TBST配制5%的BSA,室温,1~2小时。封闭结束后,用5%的BSA配制一抗稀释液,4度,过夜。赶时间的时候,可以试试37度,封闭半小时。不赶时间,或者做到封闭这一步的时候,天色已晚想下班,可以4度封闭过夜。---------以下是trouble shooting讨论--------背景高,排除了抗体因素,高度怀疑是封闭不全的情况,解决策略:放弃省时间的想法,优先尝试4度封闭过夜这个条件。换用不同的封闭剂。背景过于干净,条带弱,排除其它因素,怀疑是封闭过度的情况,解决策略:将1X TBST换成不含Tween-20的1X TBS来配制封闭液。降低牛奶或BSA的浓度。减少封闭时间。(这条不是很推荐。)换用不同的封闭剂。不过,,,封闭过度的情况不是很常见,不应该作为条带弱的时候优先考虑的情况。今天还是要祝大家的Western blot顺利!欢迎提出、讨论更多的关于Western blot的问题~本文为我原创本文禁止转载或摘编

分享到:

投诉或建议评论-----

WB/ELISA/IHC/FC实验指南:如何选择合适的对照剂和封闭剂? - 知乎

WB/ELISA/IHC/FC实验指南:如何选择合适的对照剂和封闭剂? - 知乎切换模式写文章登录/注册WB/ELISA/IHC/FC实验指南:如何选择合适的对照剂和封闭剂?优宁维生物​任何问题可拨打优宁维客服热线了解:4008-168-068。你是否遇到过以下几种难题,IHC实验结果不准确,背景高;多标记免疫组化实验中一抗种属来源相同时,不知该如何进行实验;IP/Co-IP后的WB实验出现非特异性条带;流式实验中没有合适的直标一抗......你是否知道通过选择正确的对照剂和封闭剂,可以帮助你解决这些实验中遇到的难题,且更容易获得准确的实验结果。本文将给大家带来流式细胞实验、WB、ELISA、IHC几大实验中常见的问题,及解决办法。流式细胞实验(Flow Cytometry)可能遇到的问题解决办法适用试剂因抗体与样本中的Fc受体相结合而产生不需要的背景对Fc受体进行封闭标准封闭血清(血清应与标记的抗体种属来源一致)使用F(ab')2形式的二抗来防止二抗与Fc受体的结合F(ab')2形式的二抗如何确认一抗与抗原是特异性结合使用同型对照抗体*作为阴性对照,用于显示一抗有进行特异性结合*同型对照抗体指的是一种和一抗来源相同的没有特异性的IgG蛋白ChromPure™ 纯化蛋白如何确认二抗产生的是目的信号使用同型对照抗体*作为阴性对照,用于显示二抗有进行特异性结合*同型对照抗体指的是一种和一抗来源相同的没有特异性的IgG蛋白ChromPure™ 纯化蛋白在没有直标一抗的条件下想要加快实验进度在孵育样本之前使用Fab片段抗体先与一抗孵育FabuLight™ Fab片段抗体Western Blotting实验可能遇到的问题解决办法适用试剂出现非特异性条带在用一抗孵育前,使用适当的阻断试剂阻断膜标准血清(5%v/v)(血清应与标记的抗体种属来源一致),或BSA(5%w/v)(不含IgG蛋白和蛋白酶)如果使用来自山羊、马或绵羊的一级抗体,则避免使用牛奶或牛血清白蛋白。牛的IgG可能与抗体相互作用,这是由于近缘种的同源表位。标准血清(5%v/v)(血清应与标记的抗体种属来源一致)IP后WB实验时,目标蛋白分子量位于25kDa或25kDa附近时,想要消除来自IP实验的抗体干扰为了避免检测到50 kDa的抗体重链,使用抗轻链特异性的二抗。抗轻链特异性的二抗为了避免检测到25 kDa的抗体轻链,使用单价Fab片段进行阻断后,使用抗IgG且抗Fc端特异性的二抗。抗Fc端特异性的二抗+Fab片段二抗(FabuLight™)ELISA实验可能遇到的问题解决办法适用试剂高背景在与一抗孵育之前,使用适量封闭试剂进行完全封闭标准血清(5%v/v)(血清应与标记的抗体种属来源一致),或BSA(5%w/v)(不含IgG蛋白和蛋白酶)无信号使用阳性对照证明带标记二抗的活性,并在孵育了一抗同型对照后直接用二抗来检测ChromPure™纯化蛋白❖关于使用牛血清白蛋白(BSA)和牛奶作为封闭剂的Tips:BSA和dry milk有时含有牛的IgG。除了Jackson提供的牛来源抗山羊IgG的二抗外,许多其他的如抗牛、抗山羊和抗绵羊的二抗都会与牛的IgG发生反应。因此,使用BSA或dry milk进行阻断或稀释会显著增加背景并降低抗体效价。使用与二抗种属来源一致的标准血清(5% v/v)来进行阻断是更好的选择。免疫组化实验可能遇到的问题解决办法适用试剂如何确认一抗与抗原是特异性结合使用同型阴性对照(与一抗物种相同的非特异性IgG)来证明一抗与抗原的特异性结合ChromPure™纯化蛋白高背景(General)将可能会与其他试剂结合的内源性结合位点都封闭起来标准血清(血清应与标记的抗体种属来源一致)在没有载体蛋白的缓冲液中稀释抗体,并将该混合液离心以剥离沉淀物如PBS/Tween 20等缓冲液因识别同源性免疫球蛋白而产生高背景使用经过预吸附处理的二抗来减少细胞或组织样本中相关物种之间的交叉反应经过预吸附,最大程度消除物种间交叉反应的二抗封闭内源性免疫球蛋白Fab片段二抗多标免疫组化实验时一抗种属来源相同根据protocol使用Fab片段二抗来完成多标实验Fab片段二抗在孵育前先对一抗进行免疫标记FabuLight™内源性酶使用过氧化物封闭内源性过氧化酶过氧化物使用levamisole封闭内源性磷酸酶levamisole内源性生物素封闭内源性生物素使用streptavidin(链霉亲和素)孵育,以消除内源性生物素离子作用或疏水作用在缓冲液中加入合适的试剂,优化盐浓度和pH值Tween 20 或/和Triton X-100免疫试剂上文中提到的能够帮助解决实验里出现的问题的免疫试剂介绍如下:❖标准血清(Normal Serums)标准血清来自未产生免疫反应的动物,因此不会检测到任何特异性抗原。在PBS(或类似的缓冲液)中稀释到5% (v/v)的标准血清被强烈推荐作为阻断剂,以减少非特异性、保守序列和/或fc受体结合的背景。最好的结果是使用稀释的来自同一宿主的正常血清作为标记抗体,在加入一抗之前作为单独的孵育步骤。❖从标准血清中提取的ChromPure™纯化蛋白(ChromPure™ Purified Proteins from Normal Serums)ChromPure™蛋白主要用作一抗或二抗的实验对照。它们也可用作Western blotting, IHC和IF的阻断试剂。ChromPure™蛋白来源于未免疫动物的血清,不识别任何已知的抗原。它们是使用各种色谱技术制备的,以产生无污染分子观察到的浓度高达20 mg/ml的材料,使它们成为最敏感的测定的实验对照的理想选择。ChromPure™蛋白可用于许多物种的各种格式,包括全免疫球蛋白,F(ab’)2和Fab片段。人IgM、血清IgA和其他蛋白质也可用。Jackson为该产品线提供了广泛的偶联物,包括一系列荧光染料和示踪酶,允许从非特异性相互作用中分辨出信号。❖单价Fab片段亲和纯化抗体亲和纯化抗体fab片段可用于阻断内源性免疫球蛋白以减少背景染色和双标记来自同一宿主物种的主抗体。下面的例子展示了在小鼠组织上使用小鼠一抗时,如何使用Fab片段阻断内源性免疫球蛋白。❖牛血清蛋白(无IgG,无蛋白酶)牛血清白蛋白(BSA)被广泛用作稀释抗体的载体蛋白,并在免疫测定和免疫检测方案中作为一种常用的蛋白质阻断剂。如果牛血清蛋白是您的试验所需的稀释剂或阻断剂,那么使用适合此目的的牛血清蛋白是很重要的。牛IgG与山羊、绵羊和马的IgG有许多共同的表位,可以成为针对这些物种的二抗的靶点(牛抗山羊IgG除外)。这也可能发生在与牛IgG有交叉反应的其他抗体上。这些相互作用可能导致抗体活性的损失和/或背景增加。这些背景的产生可能来自于粘稠可溶性免疫复合物,或来自于因牛IgG蛋白的污染而产生的非特异性交叉反应。更多推荐:编辑于 2022-09-22 08:56ELISAwb实验​赞同 1​​添加评论​分享​喜欢​收藏​申请

Western Blotting Immunodetection Techniques | Bio-Rad

Western Blotting Immunodetection Techniques | Bio-Rad

Skip to main content

Browsing Modes for Business Users

Create mode

– the default mode when you create a requisition and PunchOut to Bio-Rad. You can create and edit multiple shopping carts

Edit mode

– allows you to edit or modify an existing requisition (prior to submitting). You will be able to modify only the cart that you have PunchedOut to, and will not have access to any other carts

Inspect mode

– when you PunchOut to Bio-Rad from a previously created requisition but without initiating an Edit session, you will be in this mode. You cannot modify any Cart contents

Please search here

Login | Register

My Bio-Rad

Log Out

Login | Register

ph | en

Contact Us

Quick Order

0

Welcome

Login

Register

My Bio-Rad

Log Out

Specialties Back Close Menu Specialties Life Science Bioprocessing Clinical Research Drug Discovery & Development Translational Research Wastewater Surveillance Clinical Diagnostics Diabetes / Hemoglobinopathies Hospital / Clinical Core Lab Immunology Infectious Disease Molecular Newborn Screening Transfusion Medicine group3 Quality Control Food & Beverage Testing Classroom Education Applications Back Close Menu Applications Life Science Bioprocess Analytics Bioprocess Chromatography Cell Line Development / Characterization Cell Research Gene Expression Analysis Immunology Mutation Detection Pathogen Detection Potency Protein Expression / Characterization / Quantitation Viral / Vector Characterization Clinical Diagnostics Autoimmune Bacteriology Blood Typing, Screening & Antibody Identification Diabetes Hemoglobinopathies Infectious Disease Testing Molecular Diagnostics Mycology Newborn Screening Toxicology Virology group3 Quality Management Data Management Systems Proficiency Testing & EQAS Quality Control Verification & Validation group4 Food & Beverage Testing Food & Beverage Safety Testing Cannabis Testing Veterinary Diagnostics Water Quality Testing group5 Classroom Education Biotechnology Textbook & Program DNA, PCR & Agarose Gel Electrophoresis Genetic Engineering, Microbiology & Model Organisms Proteins, Enzymes & ELISA COVID-19 Assay & Research Products Back Close Menu Products Life Science Products Antibodies Cell Isolation & Analysis Chromatography Digital PCR Electrophoresis & Blotting Flow Cytometers Immunoassays PCR & qPCR Sample Preparation & Quantitation Transfection Clinical Diagnostics Autoimmune Testing Blood Typing & Antibody Detection Diabetes Testing Hemoglobinopathy Testing Infectious Disease Testing Microbiology Testing Newborn Screening Quality Controls Software & Data Analysis group3 Molecular Testing Food & Beverage Testing Classroom Education Promotions Quick Order Services Back Close Menu Services Custom PCR Plastics & Reagents Expert Care Service New Labs & New Grants group3 Remote Diagnostic Services Supply Center Program group4 Trade-Up Program Resources Back Close Menu Resources Documentation Certificate of Analysis Literature Library ​​Electronic IFUs Literature Library Product Safety Data Sheets Quality Management Systems Certificates Quality Control Inserts Learning Center Life Science Clinical Testing Solutions Quality Controls Bioprocess Chromatography Resources Food & Beverage Testing Classroom Resources group3 Tutorials Webinars News & Events Back Close Menu News & Events Events Product News Corporate News

Order Status Quick Order Support

Breadcrumb

Home

Resources

Life Science

Introduction to Western Blotting

Western Blotting Immunodetection Techniques

Western Blotting Immunodetection Techniques

Overview

Sample Prep

Electrophoresis

Transfer

Immunodetection

Image Acquisition

Image Analysis

 

 

Better Immunodetection

Information on antibodies, their selection, and use.

On This Page

Detection Overview

Blocking

Primary Antibodies

Secondary Antibodies

Detection Methods

Total Protein Detection

Tips & Protocols

Sign Up for Western Blotting Tips and Webinar Alerts

 

 

Detection Overview

After transfer, proteins from the gel will be immobilized on the membrane. This section describes the process of specifically detecting your particular protein of interest in order to identify and quantify its presence and abundance in the sample. Western blot detection of proteins utilizes primary antibodies that are specific for the target protein which are then in turn recognized by secondary antibodies that are conjugated with enzymes or fluorescent molecules for detection. The correct selection and use of appropriate primary and secondary antibodies is crucial for maximizing signal while reducing background. The proper use of protein loading controls are also critical for signal normalization in quantitative western blotting. We discuss the most popular methods to detect total protein on the membrane for loading controls and their relative advantages and disadvantages.

The Immunodetection Workflow

Western Blotting Antibody Detection

After proteins are transferred from the gel to the membrane, antibodies specific to your protein of interest (primary antibodies) are incubated with the membrane to allow them to recognize their targets. A second incubation with conjugated antibodies specific to the primary antibodies (secondary antibodies) enables visualization by various methods.

Block unbound membrane sites

Membranes are incubated in a blocking agent that masks any sites on the membrane that would allow antibodies to bind non-specifically. Failure to do so raises background.

Incubate with primary antibody. Wash away excess.

Membranes are then incubated with primary antibodies that are specific to your protein of interest. These bind to their targets and any excess is washed away.

Incubate with secondary antibody. Wash away excess.

The membrane is then incubated with secondary antibodies that recognize the primary antibodies and are also conjugated to either an enzyme or a fluoroscent molecule. Any excess is washed away.

Develop signal

For secondary antibodies conjugated with an enzyme, the membrane is incubated with a chemical substrate that produces a signal that can then be detected. If the secondary is conjugated to a fluorescent label, the membrane can be directly imaged in an instrument capable of fluorescent imaging.

Blocking

Following transfer, unoccupied antibody binding sites on the membranes must be blocked to prevent nonspecific binding. Failure to completely block these sites can lead to high backgrounds that obscure the signal.

Various blocking reagents are available, and no single blocker will be optimal for all antibody/antigen combinations. The best blocker for each experiment will depend on the antibody and membrane type. Optimize the detection system for maximal signal with lowest background by testing several blocking agents. Modern formulations like Bio-Rad’s EveryBlot Blocking Buffer are universal, performing well across a wide range of targets, sample types, and detection methods.

Blocking duration also affects the signal and background levels. Blocking for 1 hour with constant agitation is a good starting point. Excessive blocking times may result in lower sensitivity as epitopes can be masked by the blocking agent and proteins washed off the membrane. In contrast, insufficient incubation times will increase nonspecific binding of the primary antibody. Advanced formulations like Bio-Rad’s EveryBlot Blocking Buffer can complete the blocking step in 5 minutes.

For detection of a phosphorylated form of a protein, blocking buffers should not contain phosphorylated proteins to avoid high background signal. Avoid use of nonfat dry milk and instead use BSA, casein, or advanced formulations that are compatible with phosphoprotein detection.

 

Quick Tips:

Optimizing the Blocking Step in Western Blotting

Watch the video to understand the experimental parameters and which type of blocking agent to use to ensure success of your western blot.

 

Agent

Pros

Cons

Non-fat milk (1–5%)

Inexpensive, widely available

Not ideal for phosphoproteins, biotin-avidin/streptavidin, or AP detection

Speckling if not completely solubilized

BSA (0.5–5%)

Recommended for phosphoprotein detection, AP/biotin-avidin detection

Not usable with antibodies created using BSA-coupled peptides, phosphotyrosine Ab

Casein (1–2%)

Balance of stringency & sensitivity

Ideal for most detection methods

Blocking may be insufficient for complex biological samples

Gelatin (1–5%)

Inexpensive, widely available

Fish gelatin does not cross-react with mammalian proteins

Porcine gelatin solidifies in cold blocking

Speckling if not completely solubilized

Cannot be used with avidin-biotin detection

Specialized

Advantage depends on product

Can be expensive

Primary Antibodies

An antibody is an immunoglobulin protein such as lgG that is generated in response to exposure to a foreign substance, or antigen. Antibodies have specific affinity for the antigens that elicited their synthesis.

Primary Antibodies

 

Primary antibodies are raised against a protein of interest and will selectively recognize and bind to target proteins that have been immobilized to a membrane. Antibodies can be designed to be specific for certain parts of a target protein, or they can be designed to be specific for only modified versions of the protein.

Primary Antibody Selection

Antibodies should be specific, selective, and give reproducible results. To ensure the specificity of the primary antibody, it is important to use positive and negative controls when running your blot. As a positive control, purified proteins or lysates overexpressing the target protein can be used. As a negative control, you can include secondary-antibody-only controls (omitting the primary antibody incubation step) and samples from a tissue or cell lysates known not to express the target protein such as cells engineered with a genetic knockout. Before performing the experiments review the literature in order to understand the expression profile of the protein

Selecting Primary Antibodies for Best Results in Western Blotting

Choosing a Primary Antibody for Multiplex Western Blotting

How to Select the Right Antibody

Bio-Rad has developed tips to consider when choosing your antibody.

See Antibody Tips

 

The wording good and bad antibody or the most specific antibody should be avoided, since a specific antibody in one sample context can give rise to high cross-reactivity in another sample context depending on the nature of the epitope(s) that it will recognize.

— Edfors et. al. 2018, Nature 9:4130

 

When selecting a phospho-specific antibody for your experiments, it is crucial to ensure that the antibody specifically detects the protein of interest only when it is phosphorylated at the indicated site. You might also want to consider treating cells with growth factors or chemical compounds that induce or inhibit expression of the target.

Monoclonal vs. Polyclonal Antibodies

The antibodies used to detect the target protein in a western blot will be either monoclonal or polyclonal. Polyclonal antibodies consist of a mixed pool of immunoglobulin molecules that bind to several different epitopes found on a single antigen. Polyclonals are usually produced in rabbits, donkeys, sheep, and goats, and are purified from serum.

In contrast, monoclonal antibodies bind to a single epitope within a target antigen. They are composed of homogeneous cloned immunoglobulin molecules, rather than the heterogeneous antibody mixture typical of polyclonals. Monoclonals are made by fusing antibody-producing cells from the spleen of the immunized animal (usually a rat or mouse) with an immortalized cell line to produce single specificity antibodies that can be purified from tissue culture supernatant.

 

Monoclonal

Polyclonal

Specificity

Specificity for a single epitope.

Varying specificities to multiple epitopes

Identification

Identifies whether a particular region of a protein is present

Identifies the entire target protein via binding at multiple sites. Since multiple epitopes are targeted, there is a higher likelihood of detection of the target

Cross-Reactivity

May cross-react with other proteins that share this epitope, such as isomers or common motifs

Higher background and cross-reactivity possible due to detection of multiple epitopes, any of which may be shared by related proteins

Sensitivity

Usually less sensitive since only a single antibody molecule binds to each target

More sensitive because signal is amplified through the binding of several antibodies per target

Cost

More expensive to produce initially, but available in an unlimited supply

Less expensive to produce initially, but supply is limited to immunized animal(s). Greater variability between preparations

 

Primary Antibody Incubation

After blocking, the membrane is incubated in a solution containing the primary antibody, usually diluted in blocking buffer. The time and temperature of incubation depends on the binding affinity of the antibody to the target protein and should be determined for each antibody individually. One hour at room temperature with gentle agitation is a good starting point. In order to reduce the background staining, the amount of Tween 20 used in the buffers is also important.

Antibody Concentration

The optimum antibody concentration is the dilution of antibody that still yields a strong positive signal without background or nonspecific reactions. Instructions for antibodies obtained from a manufacturer typically suggest a starting dilution range. For custom antibodies or for those where a dilution range is not suggested, good starting points are:

1:100–1:1,000 dilution when serum or tissue culture supernatants are the source of the primary antibody

1:500–1:10,000 dilution of chromatographically purified monospecific antibodies

1:1,000–1:100,000 dilution may be used when ascites fluid is the source of antibody

 

Quick Tips:

How to Optimize Primary Antibody Concentration and Incubation for Western Blots

Watch this video to explore considerations for optimizing incubation time and dilution of primary antibodies when performing a western blot.

 

See Our Western Blotting Primary Antibodies

Phospho-Specific Antibodies

Protein phosphorylation, the addition of a phosphate group to serine, threonine or tyrosine residues, is an important cellular process utilized to send cellular signals from the membrane to the nucleus. Protein phosphorylation may result in conformational changes that trigger the activation or inactivation of an enzyme.

Phospho-specific antibodies are primary antibodies that detect only the phosphorylated forms of proteins and recognize the phosphorylated serine, threonine, or tyrosine residues in the context of the rest of the protein. Using a combination of total protein detection (using primary antibodies that recognize both phosphorylated and non-phosphorylated forms of the protein) and phospho-specific antibodies, it is possible to assess the degree of phosphorylation for any given protein.

Prior to using phospho-specific antibodies, ensure that the antibodies have been validated for your experimental system. This can be accomplished by using positive and negative controls. For example, lysates from cells that are either untreated or have been treated to stimulate the pathway of interest can act as negative and positive controls. Likewise, absence of detection can act as a negative control on lysates that have been treated with lambda phosphatase to remove phosphate groups.

See Our Phospho-Specific Antibodies

Secondary Antibodies

Purification of Cross-Adsorbed Antibodies

A solution of secondary antibodies raised against mouse lgG is passed over a column containing immobilized serum proteins from potentially cross-reactive species such as rat or rabbit.

Only antibodies highly specific for mouse lgG will flow through the column, while antibodies cross-reacting to rat or rabbit will bind and remain in the column. The flow-through solution contains antibodies that specifically recognize mouse lgG.

 

Secondary antibodies are specific for the isotype and species of the primary antibody. For example, a goat anti-rabbit secondary is an antibody raised in goats against a primary antibody raised in rabbits.

Secondary antibodies bind to a number of different conserved regions on the primary antibody, and act to amplify the signal, increasing detection sensitivity. Secondary antibodies are labelled with either an enzyme for colorimetric or chemiluminescent detection or with a fluorescent dye for fluorescent detection of the protein of interest.

Cross-Adsorbed Antibodies

Secondary antibodies raised against primary antibodies of one species can recognize those from other species, especially if they are from closely related animals. For example, parts of the constant regions of mouse and rat antibodies are evolutionarily conserved, leading to conserved epitopes between both species. Since secondary antibodies are generally polyclonal, when generating secondaries against mouse, a subset of those secondaries will be specific for those conserved epitopes, being able to recognize them whether the epitope resides on a mouse or rat antibody. This cross-reactivity could lead to unexpected bands when multiplexing or cause high background.

To remove the undesired antibodies from a polyclonal pool, an affinity chromatography column is used to purify the secondary antibody preparation of offending cross-reactive species. Clonal antibodies that recognize the immobilized antigen(s) are removed. The unbound pool of antibodies is now cross-adsorbed against the immobilized antigen and should show no reactivity towards it.

The most common type of cross-adsorbed secondary antibody is species specific, which is most useful for multiplexing, although there are also instances when isotype-specific antibodies are required. For example, immunization with a purified IgG1 preparation might be expected to generate a serum with a specific reactivity towards IgG1 and no cross-reactivity with other antibody isotypes. However, due to the polyclonal nature of the serum combined with the conservation of some epitopes between classes and isotypes, a component of the polyclonal serum may react with an epitope on IgG1 that is also found on IgG2a, confounding the isotype specificity.

A solution of secondary antibodies raised against mouse IgG is passed over a column containing immobilized serum proteins from potentially cross-reactive species such as rat or rabbit.

Only antibodies highly specific for mouse IgG will flow through the column, while antibodies cross-reacting to rat or rabbit will bind and remain in the column. The flow-through solution contains antibodies that specifically recognize mouse IgG.

Secondary Antibody Concentration

Similar to primary antibodies, the optimum antibody concentration is the dilution of antibody that still yields a strong positive signal without background or nonspecific reactions. Fortunately, high-quality secondary antibodies are commonly available, and manufacturers typically suggest a starting dilution range.

See Our Western Blotting Secondary Antibodies

 

Quick Tips: How to Choose Secondary Antibodies for Multiplex Western Blotting

In this video, we discuss the best practices for selecting secondary antibodies that are compatible with your primary antibodies and your detection methods to produce high-quality, reproducible results.

Detection Methods

In the past, many different methods were used for western blot detection, but now the vast majority employ enzymatic chemiluminescence or fluorescent detection. Thus, most secondary antibodies are conjugated to an enzyme such as alkaline phosphatase (AP) or horseradish peroxidase (HRP) for use with a chemiluminescent substrate or labeled with a fluorescent compound for imaging.

Chemiluminescence Detection

 

Chemiluminescence is a chemical reaction in which the oxidation of a chemical substrate such as luminol is catalyzed by an enzyme, typically horseradish peroxidase (HRP), and the reaction produces light as a byproduct. The resulting light can be captured on film or by a digital imager.

Luminol emits light only weakly, so enhancers are added to the reaction to increase the signal. This enhancement of a luminol-based signal is commonly referred to as enhanced chemiluminescence (ECL). There are a number of different enhancers available, some of which can increase the signal by as much as a 1,000-fold, making ECL more sensitive than other common detection systems such as conversion of substrates to colored precipitates.

The light intensity will be roughly proportional to the quantity of your protein of interest, allowing semi-quantitation of relative protein abundance. Since this detection method relies on an enzyme-substrate interaction, the kinetics of the reaction plays a role in the linearity of the signal. Therefore, for more accurate quantitation, care must be taken to ensure that the sample load is within the linear range of the assay and the detection signal is not saturated.

Luminol oxidized by HRP in the presence of H2O2 leads to the formation of a 3-aminophthalate dianion and the release of light.

 

Quick Tips:

How to Image a Chemiluminescent Western Blot

Watch this video to see how to prepare a western blot membrane for chemiluminescent detection and ensure a strong chemifluorescent signal during image acquisition.

 

See Our Chemiluminescent Substrates »

Fluorescence Detection

 

In fluorescence detection, a primary or secondary antibody is labeled with a fluorescent molecule (a dye or fluorophore). A light source that produces photons within the fluorophore's excitation spectrum excites the fluorophore, and the fluorophore then emits photons with a longer wavelength. The difference in wavelength between excitation and emitted light is termed Stokes shift. This emitted light of longer wavelength can then be distinguished from the excitation light via appropriately designed optical filters and detected by a digital imager.

Fluorescence detection has a number of advantages over traditional chemiluminescent detection. As fluorescent detection does not rely on an enzyme-substrate reaction, the use of fluorophores can be more quantitative than chemiluminescent detection, is often faster, and reduces waste.

The greatest advantage of fluorescent western blotting detection over chemiluminescent detection is the ability to simultaneously detect a large number of proteins on one blot, using a process called multiplexing. This relies on choosing fluorophores that fluoresce at different wavelengths and can be distinguished by the digital imager.

Fluorophore Selection

When using fluorescence detection, consider the following optical characteristics of the fluorophores to optimize the signal:

Quantum yield — efficiency of photon emission after absorption of a photon. Processes that return the fluorophore to the ground state but do not result in the emission of a fluorescence photon lower the quantum yield. Fluorophores with higher quantum yields are generally brighter.

Extinction coefficient — measurement of how well a fluorophore absorbs light at a specific wavelength. Since absorbance depends on path length and concentration (Beer's Law), the extinction coefficient is usually expressed in cm -1 M-1. As with quantum yield, fluorophores with higher extinction coefficients are usually brighter.

Stokes shift — the difference in the maximum excitation and emission wavelengths of a fluorophore. Since some energy is dissipated while the fluorophore is in the excited state, emitted photons are of lower energy (longer wavelength) than the light used for excitation. Larger Stokes shifts minimize overlap between the excitation and emission wavelengths, increasing the detected signal.

Excitation and emission spectra — excitation spectra are plots of the fluorescence intensity of a fluorophore over the range of excitation wavelengths; emission spectra show the emission wavelengths of the fluorescing molecule. Choose fluorophores that can be excited by the light source in the imager and that have emission spectra that can be captured by the instrument. When performing multiplex western blots, choose fluorophores with widely separated emission spectra to enable good signal separation among the different color channels.

Fluorophore Stokes Shift

A high-energy photon excites a fluorophore, causing it to leave the ground state (S0) and enter a higher energy state (S11). Some of this energy dissipates, allowing the fluorophore to enter a relaxed excited state (S1). When the fluorophore returns to the ground state, a photon of light is emitted. Since some of the energy was dissipated, the emitted photon is of lower energy (longer wavelength).

The difference in wavelength between the exciting light and the emitted light is called the Stokes shift. Larger Stokes shifts minimize the overlap between the excitation and emission wavelengths, increasing the detection signal-to-noise ratio.

See Our Products for Fluorescent Western Blotting Detection »

Total Protein Detection

Total protein staining provides an image of the complete protein pattern on the blot. This information helps determine transfer efficiency and molecular weight of the transferred proteins. This information can also be used to determine relative quantity of sample that was loaded in each lane.

Several total protein stains are available and commonly used in western blotting. The table below provides an overview of total protein detection methods and applications.

Total Protein Detection Methods for Western Blotting

Detection Method

Sensitivity

Advantages

Disadvantages

Imaging

Anionic dyes (Ponceau S, Fast Green, Coomassie Brilliant Blue, Amido black)

100–1,000 ng

Inexpensive, rapid

Coomassie and Amido black are not compatible with downstream immunodetection

Epi illumination

Fluorescent stains (SYPRO Ruby and Deep Purple)

2–8 ng

Sensitive; most are compatible with immunodetection

Additional staining and destaining steps

Fluorescent capable digital imager with UV, visible light LED, or lasers

Stain-Free Imaging

2–28 ng

Rapid and convenient—ready in less than one minute, and no separate staining or destaining required. Sensitivity comparable to Coomassie

Requires use of Stain-Free Gels and compatible imager

Bio-Rad imagers

Stain-Free Imaging Technology

Bio-Rad's stain-free technology allows direct visualization, analysis, and documentation of protein samples in PAGE gels and on blots, without staining or destaining. Stain-free imaging provides equal or better sensitivity compared to Coomassie staining and eliminates organic waste disposal concerns.

Linear dynamic range provided by stain-free technology for total protein measurements. HeLa cell lysate dilutions from 80–2.5 µg total protein.

Learn More about Stain-Free Imaging Technology »

Total Protein Normalization

Bio-Rad’s stain-free technology can be used for total protein normalization of western blots. Total protein normalization uses the signal of all proteins in a sample to determine load. This approach is more robust against expression changes of any one protein to an experimental condition, which can occur when using a single “housekeeping” protein.

Learn More about Total Protein Normalization »

Immunodetection Tips and Protocols

Western Detection Tips

Use high-quality primary antibodies.

A good antibody is sensitive, meaning it can detect low amounts of your target, and is also specific, recognizing only the target, without giving spurious secondary bands. Antibody vendors are increasingly offering antibodies that have been certified for western blotting.

Use cross-adsorbed secondary antibodies.

Cross-adsorbed antibodies offer a lower chance of cross-reactivity and reduced background giving more reliable results. They are readily commercially available so they should be used whenever possible.

Optimize antibody concentration to maximize signal to background.

Sensitive detection of your target depends on high signal and low background. Reducing antibody concentration can reduce desired signal, but the greater reduction of background more than makes up for this.

For multiplex detection, first optimize antibodies to targets individually.

When detecting multiple targets simultaneously, carry out detection of each target individually first. This will simplify any needed troubleshooting.

 

Western Detection Protocols and Resources

Find the right products for you using the free Western Blot Selector Tool

Start Tool

Find the right products for you using the free Western Blot Selector Tool

Start Tool

Western Blotting Protocol Library​

Filter by your laboratory set-up and reagents to get a custom western blotting protocol that best fits your needs.

Stain-Free Western Blotting Guide

Find out how Stain-Free technology can revolutionize your western blotting.

Better Western Blotting Guide

Tips, Techniques, and Technologies from the Western Blotting Experts at Bio-Rad Laboratories.

Protein Blotting Guide

(PDF 7.2 MB)

Details on blotting technology, methods, products, tips, techniques, and troubleshooting guidelines.

Western Blot Doctor

Our self-help troubleshooting guide covers solutions to many common and not-so-common western blotting issues and helps your blots look their best.

Best Practice for Western Blot Detection of Phosphorylation Events

Ten tips to ensure robust data generation and cleaner blots.

Protocol: Detection of Phosphorylated Proteins by Western Blotting

This protocol describes how to detect phosphorylated proteins by western blotting using Phospho-Specific PrecisionAb Antibodies.

Fundamentals of Western Blotting Course #3: Immunodetection​

 

Request your Free Electrophoresis & Western Blotting Layout Post-It

This simple tool allows users to keep track of their Western Blotting experiment from sample preparation to imaging.

Request Yours

Get Your Free Protein Standard Temporary Tattoo

You too can sport a Precision Plus Protein Kaleidoscope standard tatto temporarily.

Get Yours Now

Western Blot University

Courses designed to make you a western blotting expert.

Enroll Today

This English section is not intended for French healthcare professionals.

These pages list our product offerings in these areas. Some products have limited regional availability. If you have a specific question about products available in your area, please contact your local sales office or representative.

Follow Us

 Bio-rad LinkedIn  Bio-rad Antibodies LinkedIn

 Bio-rad YouTube  Bio-rad Antibodies YouTube

 Bio-rad Twitter  Bio-rad Antibodies Twitter

 Bio-rad Facebook  Bio-rad Antibodies Facebook

 Bio-rad Instagram

 Bio-rad Pinterest

About Bio-Rad

Bioradiations

Contact Us

Sustainability

Sitemap

Corporate News

Careers

Investor Relations

Footer

Home

|

Trademarks

|

Site Terms

|

Cybersecurity

|

Web Accessibility

|

Terms & Conditions

|

Privacy

© 2024 Bio-Rad Laboratories, Inc.

Philippines

Western Blot 封闭液的选择 – BioEngX

Western Blot 封闭液的选择 – BioEngX

推荐

最新文章

技术频道

实验基础

蛋白技术

DNA/RNA技术

克隆与表达

细胞培养与检测

生物计算技术

工具使用

生物工艺

多肽合成

数据分析

科研经验

科普

科研进展

合成生物学

生物医药

生物催化剂

基因编辑

基因检测

招生招聘

招生信息

招聘信息

海外博士(后)信息

网络研讨会

视频

社群

作者

成为作者

登录

注册

投稿

搜索

您的位置 首页 技术频道

Western Blot 封闭液的选择

作者:

fiofiona

发布: 2016-03-22

12,418阅读

0评论

封闭是Western Blot 至关重要的一部分, 所以正确的封闭液(blocking buffer)选择可以让抗体更好更准确的和抗原结合,为成功的WB奠定基础。虽然这个步骤操作简单,但是封闭液的选择确是很多科研人员的难题。为了让大家更方便的选择适合自己实验的封闭液,小编在这里给大家介绍6种不同的封闭液,以及它们的优缺点。

1脱脂奶粉(Skimmed Milk Powder)

最便宜而且最好买的封闭剂就属脱脂奶粉了。无论是从化学制品公司还是从超市购买,都可以直接拿来使用。通常封闭液的浓度为 2.5-5% (w/v)。但值得注意的是,脱脂奶粉是许多种蛋白质的混合物,其中含有酪蛋白(casein),是一种磷蛋白(phosphoprotein)。如果你的目标蛋白是磷蛋白的话,千万不要选择脱脂奶粉,否则会有很多背景信号(background signal)。即使你的目标蛋白不是磷蛋白,因为是蛋白质的混合物,所以也容易产生较高的背景信号。

2牛血清白蛋白(Bovine Serum Albumin (BSA))

牛血清白蛋白是从牛血清中提纯之后的一种球蛋白,是除了脱脂奶粉之外,非常常用的封闭剂。通常含有BSA的封闭液的浓度为2-5%(w/v)。但大家也可以根据自己实验的需要来改变浓度,因为价格比较高,所以很多研究人员都是用尽可能低而有效的浓度。虽然BSA不是磷蛋白而且是单一蛋白,但是提纯过程中有可能含有IgG或其他血清蛋白等污染物,这些蛋白都可以和哺乳动物抗体产生交叉反应(cross-react),会增加非特异性背景信号 (non-specific background noise)。

3鱼胶(Fish Gelatin)

用鱼胶当封闭液是从猪皮胶(porcine gelatin)演变而来的。鱼胶是从冷水鱼的皮肤中提取出来的,即使在温度较低的情况下也会不会凝固。通常使用的浓度为0.1-5% (w/v)。不像脱脂奶粉和BSA,它不含有任何的血清蛋白,所以就不会和哺乳动物抗体产生交叉反应,大大降低了背景信号。但是鱼胶不能用来封闭生物素-抗生物素抗体蛋白系统(biotin detection system),因为它含有内源性生物素(endogenous biotin)。

4全血清(Whole Serum)

全血清是许多蛋白质的混合物,例如胎牛血清、兔血清、山羊血清等(eg. fetal calf serum, rabbit serum, goat serum, etc.),同样可以被用来当做封闭剂。大家对它的使用率很低,因为跟脱脂奶粉和BSA相比,并没有什么突出的好处,但价格却更贵。通常使用的浓度为5-10%(w/v)。像BSA一样,它含有免疫球蛋白(immunoglobulins)和血清蛋白,会和哺乳动物抗体产生交叉反应。

5商品化封闭液(Proprietary Commercial Buffers)

商品化封闭液通常含有提纯过的蛋白,但因为是保密配方,小编也不得而知。用这个封闭液的好处就是你可以确定里面不含有磷蛋白、免疫球蛋白、白蛋白、生物素等其他封闭液中难以避免的成分。当然,价格也就更贵。每个商品化封闭液都有自己的Protocol。小编亲测,基本照做就没问题,而且封闭时间很快。

6聚乙烯吡咯烷酮Polyvinylpyrrolidone (PVP)

PVP 是传统封闭液的非蛋白质性质的替代品(non-protein alternative。虽然早在1993年就有文献发表,在封闭技术上却是很新的产品。PVP是一种水溶性多聚物(water-soluble polymer),可以很快和硝酸纤维素和PVDF膜结合。通常使用的浓度在0.5-2%(w/v),而且通常会和其他封闭剂一起使用。PVP 在用于检测较小目标蛋白的时候非常有效。

相信大家现在对各种封闭液都有了更全面的了解。总的来说,封闭液的选择基于三样事情:抗体、目标蛋白和检测系统。但是要想找到适合自己目标蛋白的封闭液,并不简单。除了排出一些很明显不合适的,剩下的就需要多花点时间尝试不同种类、不同浓度的封闭液,才能找到最适合的。

图片来自网络,内容由BioEngX原创,转载请注明!

扫描下方二维码关注BioEngX官方微信公众平台

178赞

标签:Western Blot

作者: fiofiona

伦敦大学学院博士,研究方向VLP生产,微藻的基因工程

相关文章

文献管理神器—Zotero 介绍

新组学技术| 时空组学技术(Stereo-seq)

LeDock 应用于药物虚拟筛选

PROTOCOL网站

Bio3D的安装与应用实例(DCCM)

RDKit 的使用之获得Canoncial smiles 格式分子表达式

发表回复 取消回复您的电子邮箱地址不会被公开。 必填项已用*标注名字:

邮箱:

官方微博更多话题23andme

CRISPR-Cas9

ELISA

PCR

PPT

protocol

R语言

Western Blot

作图

分子动力学模拟

分子对接

博士后招聘

合成生物学

培养基

基因技术

基因检测

基因编辑

定向进化

实验分析

实验经验

工具

引物设计

感受态

抗体

数据分析

数据库

未来医学

机器学习

生物催化剂

电泳

科技应用

科普

细胞培养

药物设计

蛋白分析

蛋白标签

蛋白表达

蛋白质

蛋白质工程

蛋白质纯化

蛋白质结构

视频

质粒

非天然氨基酸

上一篇

少叹气啊,叹多了怕你会……

2016-03-20 03:44

下一篇

Growing Organs in the Lab

2016-03-24 03:47

© 2015 BioEngX 活跃在移动端的无国界学术圈,专业生物技术社区

搜索

联系我们

联系我们

(44)07934433023

在线咨询:

邮箱: info@bioengx.org

关注微信

微信扫一扫关注我们

关注微博

返回顶部

WB实验疑难解答,及58个热门靶点WB相关关键点解析 | Abcam

WB实验疑难解答,及58个热门靶点WB相关关键点解析 | Abcam

Your browser does not have JavaScript enabled and some parts of this website will not work without it.

为了使您在Abcam官网的浏览体验更顺畅,请使用最新版本的浏览器比如 Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

Maybe later

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

Additional product types

Supporting content

Sign in to your account

Purchase online

致电 +86 21 2070 0500 或 联系我们

我的账户

退出

登录

注册

欢迎光临

登录

您还没有帐户?

注册

我的购物篮

快速订购

Abcam homepage

研究用途的产品

按产品类型

一抗

二抗

免疫测定试剂盒与试剂

细胞与组织成像工具

细胞与生化测定

按产品类型

蛋白质与肽

蛋白质组学工具

激动剂、活化剂、拮抗剂与抑制剂

细胞株和裂解液

多因子分析试剂盒

按研究领域

癌症

心血管

细胞生物学

表观遗传学

代谢

发育生物学

按研究领域

免疫学

微生物学

神经科学

信号转导

干细胞

定制化产品 & 合作关系

定制化产品 & 合作关系

定制化产品和商务合作加速您的诊断和治疗项目

定制化产品

与我们成为伙伴

技术支持

支持中心

获取研究建议和支持

查看支持中心

Protocols

一步一步完成您的实验

查看Protocols

活动通知

会议年历

肿瘤研究

心血管研究

染色质及细胞核信号转导研究

免疫学

神经生物学

干细胞研究

商品展览

实验技术视频

查看最新活动

活动说明、摘要提交、演讲者、注册方式及更多信息

查看全球活动安排

通路

细胞信号转导通路

查看所有通路

查看交叉通路

WB实验疑难解答,及58个热门靶点WB相关关键点解析

Related

热门靶点及应用解析

蛋白质印迹(Western blot)疑难解答和建议

您可点击此处下载蛋白质免疫印迹应用指南PDF文件目录:WB实验方案溶液与试剂:裂解缓冲液溶液与试剂:电泳、转膜及封闭缓冲液样本裂解样本制备上样和跑胶蛋白转膜抗体染色WB实验疑难解答无信号或信号弱检测条带与预期大小不符或多带现象高背景其他问题

WB实验方案

溶液与试剂:裂解缓冲液这些缓冲液在 4 ℃ 下可保存数周,也可分装后在 -20 ℃ 下保存长达 1 年。NP-40 缓冲液RIPA 缓冲液(放射免疫沉淀检测缓冲液)Tris-HCl1 × Hot Lysis裂解缓冲液150 mM 氯化钠1.0% NP-40(可用 0.1% Triton X-100 代替)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂150 mM 氯化钠1% IGEPAL CA-6300.5% 脱氧胆酸钠0.1% SDS(十二烷基硫酸钠)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂20 mM Tris-HCl(三羟甲基氨基甲烷盐酸盐)蛋白酶抑制剂10 mM Tris-HCL(pH 8)1% SDS1.0 mM 正钒酸钠ddH2O溶液与试剂:电泳、转膜及封闭缓冲液Laemmli 2X缓冲液/上样缓冲液电泳缓冲液(Tris-Glycine/SDS)转膜缓冲液(湿转)转膜缓冲液(半干转)封闭缓冲液4% SDS10% 2-巯基乙醇20% 甘油0.004% 溴酚蓝0.125 M Tris-HCl测定 pH 值并将 pH 值调整至 6.825 mM Tris base(三羟甲基氨基甲烷游离碱)190 mM 甘氨酸0.1% SDS测定 pH 值并将 pH 值调整至 8.325 mM Tris base (三羟甲基氨基甲烷游离碱)190 mM 甘氨酸20% 甲醇测定 pH 值并将 pH 值调整至 8.3对于大于 80 kDa 的蛋白,建议 SDS 终浓度为 0.1%。48 mM Tris base39 mM 甘氨酸20% 甲醇0.04% SDS3–5% 牛奶或 BSA(牛血清白蛋白)加入 TBST 缓冲液。充分混合后过滤。不过滤可能会有斑点沉积,这种小暗点会在显色时影响实验结果。样本裂解细胞培养裂解液的制备组织裂解液的制备将细胞培养皿放置冰上并用预冷的 PBS 洗涤细胞。吸出 PBS,然后加入预冷的裂解缓冲液(每 107 个细胞/100 mm 培养皿/150 cm2 烧瓶加 1 mL;每 5x106 个细胞/60 mm 培养皿/75 cm2 烧瓶加 0.5 mL)。用预冷的塑料细胞刮刀将贴壁细胞从培养皿上刮下,然后轻轻将细胞悬液转移到预冷的小离心管中。或者,用胰蛋白酶消化细胞并用 PBS 洗涤细胞,然后将细胞重悬浮于小离心管内的裂解缓冲液中。4 ℃ 下持续振摇 30 分钟。放入微型离心机,在 4 °C 下离心。您可能需要根据细胞类型改变离心力和离心时间;指南给出的参考标准是在 12,000 rpm 转速下离心 20 分钟,但须根据您的实验确定(白细胞所需的离心力很小)。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。用干净器械解剖目标组织,最好在冰上,并且越快越好以防蛋白酶降解。将组织放入圆底离心管或 Eppendorf 管中,浸入液氮中“速冻”。样本在 -80 °C 储存备用,或放在冰上立即匀浆。对于一块约 5 mg 的组织,向管中迅速加入约 300 μL 裂解液,并用电动匀浆器匀浆,2X 裂解液冲洗刀片两次,每次 200 μL,然后在 4 ℃ 下(例如将回旋振荡器放入冰箱)持续振摇 2 小时。裂解液的体积必须根据组织总量决定;蛋白提取物不宜过度稀释,以免造成蛋白损失,并尽量减少样本体积,以便凝胶上样。最小浓度为 0.1 mg/mL,最佳浓度为 1-5 mg/mL。在微型离心机中 4 ℃ 下按照 12,000 rpm 的转速离心 20 分钟。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。样本制备取少量裂解液,用于蛋白质定量分析。测定每种细胞裂解液的蛋白质浓度。确定蛋白质的上样量,并添加等体积的 2X 稀释 Laemmli 样本缓冲液。我们建议使用以下方法对样本进行还原和变性,除非在线抗体数据表显示应使用非还原和非变性条件。对样本进行还原和变性时,将样本缓冲液中的细胞裂解液在 100 °C 下煮沸 5 分钟。裂解液可等量分装并在 -20 °C 下储存备用。上样和跑胶1. 将等量的蛋白和分子量标志物上样至 SDS-PAGE 凝胶孔中。细胞裂解液或组织匀浆的总蛋白上样量为 20-30 μg,纯化蛋白的上样量为 10-100 ng。2. 在 100 V 下跑胶 1-2 小时。时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。建议使用还原型凝胶,除非抗体数据表推荐使用非还原性条件。凝胶百分比取决 于目标蛋白的大小:蛋白大小凝胶百分比4–40 kDa20%12–45 kDa15%10-70 kDa12.5%15-100 kDa10%25-100 kDa8%也可以使用梯度凝胶。蛋白从凝胶转移到膜膜可以是硝酸纤维素,也可以是 PVDF。用甲醇活化 PVDF 1 分钟,并在制备转膜层之前用转膜缓冲液冲洗 PVDF。转膜时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。可在封闭步骤之前用丽春红染色法检查蛋白质转膜。转膜层的制备如下:

图 1.制备好的转膜层示例。

抗体染色用封闭缓冲液在室温下封闭膜 1 小时或在 4 °C 下封闭过夜。用适当稀释的一抗在封闭缓冲液中孵育膜。我们建议在 4  °C 下过夜孵育;其他条件可以优化。用 TBST 洗涤膜 3 次,每次 5 分钟。用推荐稀释度的偶联二抗在封闭缓冲液中室温孵育膜 1 小时。用 TBST 洗涤膜 3 次,每次 5 分钟。产生信号时,请遵循试剂盒生产商的建议。除去多余的试剂,并用透明塑料膜覆盖膜。利用暗室显影技术采集化学发光图像,或利用常规图像扫描法采集比色检测图像。WB 实验疑难解答无信号或信号弱实验流程原因建议相关靶点靶点特性组织或细胞中靶标蛋白含量低参考文献或数据库数据等,确认靶标蛋白是否在待检组织或细胞中表达。附录1增加上样量,至少上样20-30 μg蛋白。浓缩使信号最大化(例如检测核蛋白要用核裂解物;检测膜蛋白用膜裂解液,超速离心分离膜蛋白,注意带上特定组分的loading control)。附录2参考文献或产品说明书,诱导增加靶标蛋白表达。附录3选择确认表达靶标蛋白的样本作为阳性对照(可参考产品说明书中提供的阳性对照)。组织或细胞中修饰后(磷酸化、乙酰化和泛素化等)的靶标蛋白含量低通常情况下,在未处理的组织或细胞中,大部分翻译后修饰状态下的蛋白含量较少。参考文献或产品说明书,诱导增加靶标蛋白含量。附录3裂解缓冲液中使用相应去修饰酶抑制剂。(例如靶蛋白磷酸化检测,裂解液中需增加磷酸酶抑制剂)阳性对照(参考产品说明书中诱导试剂和条件,处理样本。)分泌型蛋白使用 Brefeldin A(BFA)抑制蛋白分泌,提取全细胞裂解液。如果全细胞裂解液中检测不到靶蛋白,建议提取细胞培养上清中的蛋白。样本制备裂解不充分超声破碎有利于蛋白释放,建议所有样本制备时,加入裂解液后都使用超声破碎裂解样本,特别是核蛋白。附录2转膜转膜不充分使用可逆染色剂例如丽春红检测转膜效果。PVDF 膜使用前,需预先浸在甲醇中,然后浸到转移缓冲液中。检查转膜操作是否正确。小蛋白和大蛋白需注意PVDF膜孔径、转膜试剂和转膜时间等是否合适。附录4封闭封闭剂与一抗或二抗有交叉反应使用温和的去污剂如吐温-20,或更换封闭剂(常用的脱脂奶粉、BSA、血清等)。过度封闭使目标蛋白不能显色代替 5% 脱脂奶粉,使用含 0.5% 脱脂奶粉或无脱脂奶粉的抗体稀释液,或更换封闭剂(例如5% BSA),减少封闭时间。一抗孵育一抗不识别检测物种的蛋白参照说明书,比对免疫原序列和蛋白序列以确保抗体和目的蛋白会发生反应,设置阳性对照。有些蛋白缩写名称相似或相同,参照说明书,确认抗体识别的靶标蛋白。没有足够的一抗或二抗结合目标蛋白使用高浓度抗体,延长 4 ℃ 孵育时间(如过夜)。一抗反应性和敏感性限制靶标蛋白种属是否在产品说明书列出的种属范围内。抗体检测的样本是否指出仅检测recombinant fragment,若是则表明其不能检测内源样本。一抗失效使用新鲜稀释的抗体,重复使用有效浓度和稳定性会降低。二抗孵育一抗和二抗不匹配二抗需和一抗宿主的物种相同(如一抗来自兔,二抗为抗兔抗体)。二抗受叠氮钠抑制避免叠氮钠和 HRP 标记抗体一起使用。洗膜洗膜过度勿过度洗膜。检测检测试剂盒过期和底物失活使用新鲜的底物。

检测条带大小与预期不符或多带现象实验流程原因建议相关靶点样本和靶标蛋白细胞传代次数过多,使其蛋白表达不同使用原始未传代的细胞株,和现在的细胞株一起做平行对照实验。蛋白样本降解(蛋白质分子量降低)在样品缓冲液中加入足够的蛋白酶抑制剂。体内表达的蛋白样本具有多种修饰形式如乙酰化、甲基化、烷基化、磷酸化、糖基化等查阅文献,检查是否有多带报道。附录5由于翻译后修饰(PTMs),如磷酸化和糖基化或选择性剪接变异体,许多蛋白质显示的条带分子量略高于预期或出现弥散条带附录6为了确认额外的条带是由翻译后修饰引起的,可以用合适的试剂处理样品来处理修饰过的蛋白质。 例如,PNGase F可以去除糖基化, 当处理后再进行WB实验时,额外的糖基化条带应该会消失。附录6靶标蛋白含有多个异构体查阅资料,看看是否有异构体。附录4查看免疫原序列,判断抗体是否识别异构体或者剪切体。检测到未经报道过的新蛋白或同一蛋白家族中具有相似表位而结构不同的蛋白查阅其它文献报道,或 BLAST 搜寻,使用说明书推荐的细胞株或组织。样本制备靶蛋白形成多聚体这可能出现高分子量的额外条带,它们的分子量可能是预期条带的2倍或3倍。附录6SDS-PAGE 电泳上样前,煮沸 10 分钟而不是 5 分钟,使蛋白质解聚。对于多次跨膜蛋白,可尝试不煮样或使用较温和的煮样方式。附录2封闭条带为非特异性条带应用封闭多肽来区分特异性和非特异性条带,只有特异性条带能被封闭从而消失。一抗孵育一抗浓度过高,高浓度时常出现多条蛋白带降低抗体浓度和/或孵育时间。抗体未经纯化使用亲和纯化的抗体,减少非特异条带。二抗孵育二抗浓度过高,高浓度产生非特异性结合降低抗体浓度,增加二抗对照(只加二抗不加一抗的对照)。高背景实验流程原因建议转膜膜的选择导致的高背景NC 膜比 PVDF 膜背景低。封闭未进行非特异性封闭或封闭不充分延长封闭时间,考虑更换合适的封闭剂。Abcam 推荐 5% 脱脂奶粉、3% BSA 或血清封闭 30 分钟。这些可以包含在抗体缓冲液中。一抗孵育一抗浓度过高稀释抗体至合适浓度,以更高稀释度抗体孵育更长时间(耗时长但特异性结合最好)。孵育温度过高4 °C 孵育。二抗孵育二抗与封闭剂非特异性结合或反应设置二抗对照(不加一抗)。一抗或二抗与封闭剂有交叉反应在孵育和洗涤液中加入温和去污剂如吐温 -20。脱脂奶粉含有酪蛋白,对于酪蛋白激酶,该蛋白本身就是一种磷酸化蛋白底物,有可能会结合磷酸化特异性抗体而易产生高背景。使用 BSA 代替奶粉作为封闭剂。膜膜干燥在孵育过程中防止膜变干,在任何步骤都保证膜有充分的反应液,放入搅拌子不断搅动或轻轻振荡使膜浸在溶液中,避免出现干膜现象。洗膜未结合蛋白质洗涤不充分增加洗涤次数。丽春红自发荧光如果使用荧光检测,一定要在免疫染色前完全去除丽春红,因为它可以自发荧光。  检测底物过多(如果使用酶联抗体)。稀释底物,缩短底物孵育时间。  信号放大可能太高(如果使用信号放大技术)减少信号扩增的倍数(例如,如果使用生物素化,将较少的生物素结合到二抗)。其他问题问题分类实验流程原因建议背景有不均匀的白色斑点转膜转膜时膜上有气泡或抗体在膜上分布不均转膜过程中尽量去除气泡,抗体孵育时保持摇动。背景有黑色斑点封闭抗体结合了封闭剂过滤封闭剂。深背景出现白色条带(非预期背景)抗体孵育一抗或二抗加入过多稀释抗体的浓度。分子量蛋白标准条带呈黑色电泳抗体和分子量蛋白标准发生了反应在分子量蛋白标准和第一个样品之间增加一个空白条带。目的条带染色过低/过高电泳分离不彻底改变凝胶比例:分子量大的蛋白用低浓度胶,分子量小的蛋白用高浓度胶。“微笑”条带电泳迁移过快降低电泳电压,以降低迁移速度电泳温度过高(改变了 pH 值和迁移速度)低温电泳(冷库或冰上)。相同的蛋白杂交出现大小不均匀条带电泳制备凝胶时凝胶凝固太快,致使泳道中丙烯酰胺的比例不均匀参照凝胶的配方,在凝胶中加入适量 TEMED,放置时在凝胶顶部加入适量 0.1% SDS(水稀释)以防凝胶变干。凝胶染色不均匀试剂和抗体细菌污染4 °C 保存抗体并使用新鲜的缓冲液浸泡凝胶。抗体量不足确保在振荡孵育时抗体充分浸没膜。

通过邮件收到学术资源和促销信息

注册

研究类别(A-Z)

肿瘤研究

心血管研究

细胞生物学

发育生物学

染色质及细胞核信号转导研究

免疫学

代谢

微生物学

神经生物学

信号转导研究

干细胞研究

产品种类(A-Z)

一抗

二抗

生化试剂

亚类对照

流式细胞仪多色选择器

试剂盒

内参对照

细胞裂解液

多肽

蛋白酶

组织切片

蛋白标签及细胞标记物

相关试剂及工具

帮助与支持

技术支持

技术FAQ

实验步骤与建议

购买FAQ

RabMAb 产品

培训课程

按靶标浏览

企业

企业资讯

投资者关系

公司新闻

招贤纳士

关于我们

活动通知

商品展览

会议

全球网站

abcam.com

abcam.co.jp

微信扫码 关注我们

沪ICP备14046373号-1

沪公网安备 31011502007413号

销售条款

网站使用条款

Cookie政策

隐私权政策

法律

© 1998-2024 艾博抗(上海)贸易有限公司版权所有